# Math 220 Class Slides 

February 5, 2008

## 1 The Assignment

$$
f(X)=f_{M}(X)=M X
$$

where

$$
M=\left(\begin{array}{rrr}
1 & -2 & -1 \\
5 & 4 & -3 \\
-2 & -3 & 1
\end{array}\right)
$$

2 Task 1: Put $M$ in reduced row echelon form

$$
\begin{aligned}
M & =\left(\begin{array}{rrr}
1 & -2 & -1 \\
5 & 4 & -3 \\
-2 & -3 & 1
\end{array}\right) \\
R & =\left(\begin{array}{rrr}
1 & 0 & -\frac{5}{7} \\
0 & 1 & \frac{1}{7} \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

3 Task 2: Solve $f(X)=0$

$$
f(X)=M X \quad M=\left(\begin{array}{rrr}
1 & -2 & -1 \\
5 & 4 & -3 \\
-2 & -3 & 1
\end{array}\right)
$$

Principle: To solve a linear system:

1. Perform row operations on its augmented matrix so that the coefficient matrix portion is placed in reduced row echelon form
2. Apply common sense to the resulting linear system

$$
\left.\begin{array}{c}
R=\left(\begin{array}{rrr}
1 & 0 & -\frac{5}{7} \\
0 & 1 & \frac{1}{7} \\
0 & 0 & 0
\end{array}\right) \\
\left\{\begin{array}{r}
x-\frac{5}{7} z= \\
y+\frac{1}{7} z \\
0
\end{array}\right)=0 \\
0
\end{array}\right\} \begin{aligned}
& = \\
& \left\{\begin{array}{lll}
x & = & \frac{5}{7} z \\
y & = & -\frac{1}{7} z
\end{array}\right.
\end{aligned}
$$

$z$ is a parameter.

## 4 Task 3: What type of geometric object is this?

A line
The line is given in parametric form.

## 5 Task 4: Characterize Points in the Image of $f$

The image of $f$ is the set of all points $Y$ with the property that $Y=M X$ for some $X$.

$$
Y=M X=x\left(\begin{array}{r}
1 \\
5 \\
-2
\end{array}\right)+y\left(\begin{array}{r}
-2 \\
4 \\
-3
\end{array}\right)+z\left(\begin{array}{r}
-1 \\
-3 \\
1
\end{array}\right)
$$

- $Y=f(X)$ for some $X$ if and only if $Y$ is a linear combination of the columns of $M$.
- $Y=f(X)$ for some $X$ if and only if $Y$ is a linear combination of the "pivot" columns of $M$ (in this case the first two columns).

Parametric representation with parameters $s$ and $t$ :

$$
Y=s\left(\begin{array}{r}
1 \\
5 \\
-2
\end{array}\right)+t\left(\begin{array}{r}
-2 \\
4 \\
-3
\end{array}\right)
$$

The image of $f$ forms a plane through the origin.

## 6 Task 4: Equation of the Image of $f$

A plane in $\mathbf{R}^{3}$ is given by a single linear equation

$$
a x+b y+c z=0
$$

The vector $(a, b, c)$ of coefficients is a vector that is perpendicular to the plane.
A vector is perpendicular to the image of $f$ if and only if it is perpendicular to each of the pivot columns of $M$.
Solve

$$
\left(\begin{array}{rrr}
1 & 5 & -2 \\
-2 & 4 & -3
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=0
$$

and find that $(a, b, c)$ can be taken as any non-zero multiple of $(-1,1,2)$. The equation of the plane is

$$
-y_{1}+y_{2}+2 y_{3}=0
$$

