Math 220 Class Slides

William F. Hammond

Dept. of Mathematics \& Statistics
University at Albany
Albany, New York 12222 (USA)
http://www.albany.edu/~hammond/

January 31, 2008

1 Matrix Arithmetic

Matrices of the same size can be:

- Added elementwise
- Multiplied by a scalar

For matrices
A of size $m \times n$
B of size $n \times p$
the matrix product
$C=A B$ has size $m \times p$
C (the product) is defined by

$$
C_{(i, j)}=(\mathrm{i}-\mathrm{th} \text { row of } \mathrm{A}) \cdot(\mathrm{j}-\mathrm{th} \text { column of } \mathrm{B})
$$

2 Matrix Arithmetic \& Linear Equations

A system of linear equations with

- coefficient matrix M of size $m \times n$
- "right-hand side" Y with n coordinates
is essentially the same thing as the matrix equation

$$
M X=Y
$$

where

$$
X=\left(\begin{array}{r}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)
$$

Note the sizes:

$$
M: m \times n \quad X: n \times 1 \quad Y: m \times 1
$$

3 Matrix Arithmetic \& Linear Maps

An $m \times n$ matrix determines a "linear map" f_{M} :

$$
Y=f_{M}(X)=M X
$$

- M has size $m \times n$
- X is a column of length $n-\operatorname{size} n \times 1$
- $M X$ is a column of length m - size $m \times 1$
- f_{M} sends a point X in n-dimensional space \mathbf{R}^{n} to a point Y of m dimensional space \mathbf{R}^{m}. Notation:

$$
\mathbf{R}^{n} \xrightarrow{f_{M}} \mathbf{R}^{m}
$$

4 Exercises 1 \& 3

The linear system

$$
M X=Y
$$

with

$$
M=\left(\begin{array}{ccc}
1 & -1 & 1 \\
5 & -4 & 3 \\
3 & -3 & 2
\end{array}\right) \quad X=\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right) \quad Y=\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right)
$$

has solution

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{r}
-u+v-w \\
u+v-2 w \\
3 u-w
\end{array}\right)
$$

or

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{rrr}
-1 & 1 & -1 \\
1 & 1 & -2 \\
3 & 0 & -1
\end{array}\right)\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right)=Q\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right) \quad Q=\left(\begin{array}{rrr}
-1 & 1 & -1 \\
1 & 1 & -2 \\
3 & 0 & -1
\end{array}\right)
$$

5 Exercises 1 \& 3 Retrospective

- The execution of row operations shows that

$$
X=Q Y \quad \text { if } \quad M X=Y
$$

- Each elementary row operation can be reversed by another.
-

$$
M X=Y \quad \text { if and only if } \quad X=Q Y
$$

- Morever,

$$
(M Q) Y=M(Q Y)=M X=Y \text { for every } Y=\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right)
$$

- So

$$
f_{M Q}=f_{M} \circ f_{Q}=\text { the identity map } \quad \text { and } \quad M Q=1=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

6 About invertible matrices

A square matrix is invertible if there are no zero rows in its row echelon form(s).

7 Exercise No. 4

A slightly different matrix

$$
N=\left(\begin{array}{lll}
1 & -2 & 1 \\
5 & -4 & 3 \\
3 & -3 & 2
\end{array}\right)
$$

- A square matrix
- Its row echelon forms have two non-zero rows and one zero row
- Row reduction for the linear system

$$
N X=Y=\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right) \quad \text { (arbitrary right-hand side, as above) }
$$

leads to (in the last row)

$$
0=u+v-2 w
$$

- Only one of the three given right-hand sides admits solutions
-

$$
N X=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \quad \text { if and only if } \quad X=\left(\begin{array}{r}
-1 \\
0 \\
2
\end{array}\right)+t\left(\begin{array}{r}
-1 \\
1 \\
3
\end{array}\right) \text { any } t
$$

