# Linear Algebra (Math 220) Midterm Test Solutions 

March 18, 2008

1. Find the reduced row echelon forms of the following matrices:
(a) $\left(\begin{array}{ll}4 & -3 \\ 3 & -2\end{array}\right)$
(b) $\left(\begin{array}{rrr}2 & -6 & 0 \\ -3 & 9 & 1\end{array}\right)$.

## Response.

(a) $\quad R_{1} \rightarrow R_{1}-R_{2}:\left(\begin{array}{cc}1 & -1 \\ 3 & -2\end{array}\right) \quad R_{2} \rightarrow R_{2}-3 R_{1}:\left(\begin{array}{rr}1 & -1 \\ 0 & 1\end{array}\right) \quad R_{1} \rightarrow R_{1}+R_{2}:\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
(b) $\quad R_{1} \rightarrow(1 / 2) R_{1}:\left(\begin{array}{rrr}1 & -3 & 0 \\ -3 & 9 & 1\end{array}\right) \quad R_{2} \rightarrow R_{2}+3 R_{1}:\left(\begin{array}{rrr}1 & -3 & 0 \\ 0 & 0 & 1\end{array}\right)$
2. Let $f$ be the linear function from $\mathbf{R}^{4}$ to $\mathbf{R}^{4}$ given by $f(x)=M x$ where $M$ is the $4 \times 4$ matrix

$$
M=\left(\begin{array}{rrrr}
1 & 0 & 1 & 0 \\
-2 & 3 & 0 & -1 \\
0 & 1 & 0 & -1 \\
1 & 0 & 1 & 0
\end{array}\right)
$$

Find $f(x)$ when $x$ is:

$$
\text { (a) }\left(\begin{array}{r}
1 \\
-1 \\
0 \\
0
\end{array}\right) \quad \text { (b) }\left(\begin{array}{r}
0 \\
1 \\
-1 \\
1
\end{array}\right) \text {. }
$$

Response. In each case multiply $M$ by $x$ to get:

$$
\text { (a) }\left(\begin{array}{r}
1 \\
-5 \\
-1 \\
1
\end{array}\right) \quad \text { (b) }\left(\begin{array}{r}
-1 \\
2 \\
0 \\
-1
\end{array}\right)
$$

3. Let $M$ be the $3 \times 3$ matrix

$$
\left(\begin{array}{lll}
0 & 2 & 4 \\
1 & 0 & 1 \\
3 & 1 & 0
\end{array}\right)
$$

Find the inverse of $M$.
Response.

$$
\begin{aligned}
& \left(\begin{array}{rrrrrr}
0 & 2 & 4 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
3 & 1 & 0 & 0 & 0 & 1
\end{array}\right)
\end{aligned} R_{1} \leftrightarrow R_{2}:\left(\begin{array}{rrrrrr}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 2 & 4 & 1 & 0 & 0 \\
3 & 1 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Hence,

$$
M^{-1}=\left(\begin{array}{rrr}
-1 / 10 & 2 / 5 & 1 / 5 \\
3 / 10 & -6 / 5 & 2 / 5 \\
1 / 10 & 3 / 5 & -1 / 5
\end{array}\right)
$$

4. Let $g$ be the linear function from $\mathbf{R}^{3}$ to $\mathbf{R}^{3}$ that is defined by

$$
g(x)=\left(\begin{array}{rrr}
1 & 10 & 22 \\
1 & -2 & -4 \\
2 & 2 & 5
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
$$

(a) Find a parametric representation of, or a basis for, the kernel of $g$.
(b) Find one or more equations in three variables that characterize the image of $g$.

Response. Manuever a generic augmented matrix so that its first 3 columns are brought to reduced row echelon form:

$$
\begin{aligned}
& \left.\begin{array}{c}
R_{2} \rightarrow R_{2}-R_{1} \\
R_{3} \rightarrow R_{3}-2 R_{1}
\end{array}\right\}:\left(\begin{array}{rrrr}
1 & 10 & 22 & y_{1} \\
0 & -12 & -26 & y_{2}-y_{1} \\
0 & -18 & -39 & y_{3}-2 y_{1}
\end{array}\right) \quad R_{2} \rightarrow-(1 / 12) R_{2}:\left(\begin{array}{rrrr}
1 & 10 & 22 & y_{1} \\
0 & 1 & 13 / 6 & \left(y_{1}-y_{2}\right) / 12 \\
0 & -18 & -39 & y_{3}-2 y_{1}
\end{array}\right) \\
& R_{3} \rightarrow R_{3}+18 R_{2}:\left(\begin{array}{rrrr}
1 & 10 & 22 & y_{1} \\
0 & 1 & 13 / 6 & \left(y_{1}-y_{2}\right) / 12 \\
0 & 0 & 0 & \left(2 y_{3}-3 y_{2}-y_{1}\right) / 2
\end{array}\right) \quad R_{1} \rightarrow R_{1}-10 R_{2}:\left(\begin{array}{rrrr}
1 & 0 & 1 / 3 & \left(y_{1}+5 y_{2}\right) / 6 \\
0 & 1 & 13 / 6 & \left(y_{1}-y_{2}\right) / 12 \\
0 & 0 & 0 & \left(2 y_{3}-3 y_{2}-y_{1}\right) / 2
\end{array}\right)
\end{aligned}
$$

(a) The matrix has rank 2. $y_{3}$ may be used as a parameter for its null space (the kernel of $g$ ):

$$
t\left(\begin{array}{r}
-1 / 3 \\
-13 / 6 \\
1
\end{array}\right)
$$

(b) The image of $g$ is the column space of the matrix. An equation for it is:

$$
y_{1}=2 y_{3}-3 y_{2}
$$

5. Let $\mathcal{P}_{2}$ be the vector space of all polynomials $a t^{2}+b t+c$ having degree at most 2 in the variable $t$. Define $\mathcal{P}_{2} \xrightarrow{\phi} \mathcal{P}_{2}$ by

$$
\phi(f(t))=f^{\prime \prime}(t)-3 f^{\prime}(t)+2 f(t)
$$

Find the matrix of $\phi$ relative to the basis $\mathbf{v}$ of $\mathcal{P}_{2}$ (playing the role of basis for both the domain and the target of $\phi$ ) given by

$$
\mathbf{v}=\left\{1, t, t^{2}\right\}
$$

Response. One computes $\phi$ at each of the three polynomials in $\mathbf{v}$ :

$$
\begin{aligned}
\phi(1) & =2 \\
\phi(t) & =-3+2 t \\
\phi\left(t^{2}\right) & =2-6 t+2 t^{2}
\end{aligned}
$$

The coefficient vectors of these $\phi$ values relative to the basis $\mathbf{v}$ (in its role as basis of the target) are:

$$
\left(\begin{array}{l}
2 \\
0 \\
0
\end{array}\right),\left(\begin{array}{r}
-3 \\
2 \\
0
\end{array}\right),\left(\begin{array}{r}
2 \\
-6 \\
2
\end{array}\right)
$$

Hence, the matrix of $\phi$ with respect to $\mathbf{v}$ is:

$$
\left(\begin{array}{rrr}
2 & -3 & 2 \\
0 & 2 & -6 \\
0 & 0 & 2
\end{array}\right)
$$

