Linear Algebra (Math 220)
 Assignment due Thursday, May 1

Diagonalization and Orthogonal Diagonalization

Relevant reading: Lay § 7.1

- Two $n \times n$ matrices A, B are called similar when there is an invertible matrix Q such that $Q^{-1} A Q=B$.
- An $n \times n$ matrix M is called diagonalizable when it is similar to a diagonal matrix.
- If M is an $n \times n$ matrix that is the matrix of a linear map $V \xrightarrow{\varphi} V$ relative to a basis of V, then M is diagonalizable if and only if there is some basis of V consisting of eigenvectors of M.
- Two $n \times n$ matrices A, B are called orthogonally similar when there is an orthogonal matrix U such that $U^{-1} A U=B$.
- An $n \times n$ matrix M is called orthogonally diagonalizable when it is orthogonally similar to a diagonal matrix.
- If V is a vector space with a given inner product I, a linear map $V \xrightarrow{\varphi} V$ is called symmetric relative to I if and only if for all choices of v_{1}, v_{2} in V one has $I\left(\varphi\left(v_{1}\right), v_{2}\right)=I\left(v_{1}, \varphi\left(v_{2}\right)\right)$.
- If M is an $n \times n$ matrix that is the matrix of a linear map $V \xrightarrow{\varphi} V$ with respect to a basis that is orthonormal relative to an inner product I, then the following conditions are equivalent:

1. M is a symmetric matrix.
2. φ is symmetric relative to I.

3 . M is orthogonally diagonalizable.
4. There is some orthonormal basis of V consisting of eigenvectors of φ.

Exercises

1. Find a basis of \mathbf{R}^{2} consisting of eigenvectors of the matrix

$$
\left(\begin{array}{rr}
5 & 12 \\
12 & -5
\end{array}\right)
$$

2. Give an example of a 2×2 matrix having eigevalues 1 and -1 where the corresponding eigenvectors form the angle $\pi / 4$.
3. Show that the matrix

$$
\left(\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right)
$$

is not similar to a diagonal matrix.
4. Let S be the 3×3 symmetric matrix

$$
\left(\begin{array}{rrr}
2 & -1 & 0 \\
-1 & 3 & -1 \\
0 & -1 & 2
\end{array}\right)
$$

(a) Find an orthogonal matrix U and a diagonal matrix D such that

$$
U^{-1} S U=D
$$

(b) What is the largest value achieved on the unit sphere $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1$ by the function

$$
h(x)={ }^{t} x S x=2 x_{1}^{2}+3 x_{2}^{2}+2 x_{3}^{2}-2 x_{1} x_{2}-2 x_{2} x_{3} ?
$$

5. What geometric property might be said to characterize the $n \times n$ matrices that are similar to upper triangular matrices?
