Linear Algebra (Math 220) Assignment due Tuesday, April 29

Preparation

Expect a quiz.

The Characteristic Equation

If, relative to a given coordinate system in an n-dimensional vector space V, the columns of an invertible $n \times n$ matrix Q form a basis of that vector space relative to which a linear transformation that is represented in the given coordinate system by a matrix M is diagonalized, i.e., represented by a diagonal matrix D, then

$$
Q^{-1} M Q=D
$$

Equivalently $M Q=Q D$, and, taking the $j^{\text {th }}$ column one sees that

$$
M Q_{j}=(M Q)_{j}=(Q D)_{j}=Q D_{j}=d_{j j} Q_{j}
$$

Thus, the member Q_{j} of the diagonalizing basis must lie in the kernel of the linear function represented in the given coordinate system by the matrix $M-d_{j j} 1_{n}$, where 1_{n} denotes the $n \times n$ identity matrix. Thus, each Q_{j} may be found by computing the kernel of $M-t 1_{n}$ when $t=d_{j j}$, and the diagonal elements $d_{j j}$ of D may be found among the roots of the characteristic polynomial of M

$$
\operatorname{det}\left(M-t 1_{n}\right)=0
$$

A root of the characteristic polynomial is called an eigenvalue of M and a coordinate column $v \neq 0$ with the property that $M v=\lambda v$ for some eigenvalue λ of M is called an eigenvector of M. (Moreover, the eigenvalues of M and the elements of V represented in the given coordinate system by the eigenvectors of M may also be called eigenvalues and eigenvectors of the underlying linear transformation of V.)

Exercises

1. Is

$$
\left(\begin{array}{rr}
-1 & 0 \\
1 & 1
\end{array}\right)
$$

the matrix of the reflection in some line?
2. Find the matrix of the reflection of \mathbf{R}^{3} in the plane

$$
6 x-2 y+3 z=0
$$

3. Find the characteristic polynomial and its roots for each of the matrices

$$
\left(\begin{array}{rr}
3 & 4 \\
4 & -3
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{rr}
-1 & 0 \\
1 & 1
\end{array}\right)
$$

4. Let S be the 3×3 matrix

$$
\left(\begin{array}{rrr}
10 & -6 & -2 \\
-6 & 5 & -8 \\
-2 & -8 & 3
\end{array}\right)
$$

Find an orthogonal matrix U and a diagonal matrix D such that

$$
S=U D U^{-1}
$$

