Linear Algebra (Math 220)
 Assignment due Tuesday, April 22

1 Preparation

Expect a quiz.

Relevant Reading:

Lay $\S \S 6.3-6.4$
Hefferon § 3.VI

2 Exercises

1. Let U denote the 3×3 matrix

$$
\frac{1}{3}\left(\begin{array}{rrr}
2 & 2 & 1 \\
-2 & 1 & 2 \\
-1 & 2 & -2
\end{array}\right)
$$

and let φ be the linear function from \mathbf{R}^{3} to \mathbf{R}^{3} defined by $\varphi(x)=U x$ for all x in \mathbf{R}^{3}.
(a) Show that the columns of U are mutually perpendicular vectors in \mathbf{R}^{3} of length 1.
(b) Show that the rows of the transposed matrix ${ }^{t} U$ are mutually perpendicular vectors in \mathbf{R}^{3} of length 1.
(c) Compute the matrix product ${ }^{t} U U$.
(d) Show that φ is an invertible linear function, and find the matrix for φ^{-1}.
(e) Explain why the function φ preserves lengths and angles. Hint. What effect does applying φ have on the "dot product" of two vectors?
2. Let P_{2} be the vector space of polynomials of degree at most 2. Define a scalar product (analogous to "dot" product) Γ on P_{2} with the formula

$$
\Gamma(f, g)=\int_{0}^{1} f(t) g(t) d t
$$

Find the orthogonal complement, relative to Γ, of the subspace consisting of the constant polynomials.
3. Find the matrix, relative to the standard basis of \mathbf{R}^{3}, of the linear map from \mathbf{R}^{3} to \mathbf{R}^{3} that for each x in \mathbf{R}^{3} sends x to its orthogonal projection on the plane in \mathbf{R}^{3} defined by the linear equation

$$
2 x-y+2 z=0
$$

