Linear Algebra (Math 220) Assignment due Tuesday, April 22

1 Preparation

Expect a **quiz**.

Relevant Reading:

 $\begin{array}{l} Lay \ \S \ 6.3-6.4 \\ Hefferon \ \S \ 3. VI \end{array}$

2 Exercises

1. Let U denote the 3×3 matrix

$$\frac{1}{3} \left(\begin{array}{rrr} 2 & 2 & 1 \\ -2 & 1 & 2 \\ -1 & 2 & -2 \end{array} \right) \; ,$$

and let φ be the linear function from \mathbf{R}^3 to \mathbf{R}^3 defined by $\varphi(x) = Ux$ for all x in \mathbf{R}^3 .

- (a) Show that the columns of U are mutually perpendicular vectors in \mathbf{R}^3 of length 1.
- (b) Show that the rows of the transposed matrix ${}^{t}U$ are mutually perpendicular vectors in \mathbb{R}^{3} of length 1.
- (c) Compute the matrix product ${}^{t}UU$.
- (d) Show that φ is an invertible linear function, and find the matrix for φ^{-1} .
- (e) Explain why the function φ preserves lengths and angles. *Hint.* What effect does applying φ have on the "dot product" of two vectors?
- 2. Let P_2 be the vector space of polynomials of degree at most 2. Define a scalar product (analogous to "dot" product) Γ on P_2 with the formula

$$\Gamma(f,g) \;=\; \int_0^1 f(t)g(t)dt$$

Find the orthogonal complement, relative to Γ , of the subspace consisting of the constant polynomials.

3. Find the matrix, relative to the standard basis of \mathbf{R}^3 , of the linear map from \mathbf{R}^3 to \mathbf{R}^3 that for each x in \mathbf{R}^3 sends x to its orthogonal projection on the plane in \mathbf{R}^3 defined by the linear equation

$$2x - y + 2z = 0$$