Linear Algebra (Math 220)
 Assignment due Thursday, April 17

1 Preparation

Expect a quiz.

Relevant Reading:

Course notes on "change of basis" ${ }^{1}$ (also available as PDF^{2})
Lay § 4.7
Hefferon § 3.V

2 Exercises

1. Let \mathcal{P}_{2} denote the vector space of polynomials of degree 2 or less. If f is an element of \mathcal{P}_{2}, let T_{f} be the polynomial given by the formula

$$
T_{f}(x)=\frac{d}{d x}(x f(x))
$$

(a) Show that the function T that is defined by

$$
T(f)=T_{f}
$$

is a linear map from \mathcal{P}_{2} to \mathcal{P}_{2}.
(b) What is the dimension of \mathcal{P}_{2} ?
(c) Find a basis of the kernel of T.
(d) Find a basis of the image of T.
2. Let f be the linear function from \mathbf{R}^{3} to \mathbf{R}^{3} that has the matrix

$$
D=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 3
\end{array}\right)
$$

relative to the basis of \mathbf{R}^{3} given by the columns of the matrix

$$
\left(\begin{array}{rrr}
3 & 6 & 2 \\
2 & -3 & 6 \\
6 & -2 & -3
\end{array}\right)
$$

Find the matrix of f relative to the standard basis of \mathbf{R}^{3}.

[^0]
[^0]: ${ }^{1}$ URI: http://math.albany.edu/math/pers/hammond/course/mat220s2008/mab.xhtml
 ${ }^{2}$ URI: http://math.albany.edu/math/pers/hammond/course/mat220s2008/mab.pdf

