Linear Algebra (Math 220) Assignment due Tuesday, April 15

1 Preparation

Relevant Reading:

Course notes on "change of basis" ${ }^{1}$ (also available as PDF^{2})
Lay § 4.7
Hefferon § 3.V

2 Exercises

1. Find the determinant of the 4×4 matrix

$$
\left(\begin{array}{rrrr}
1 & 2 & -4 & 1 \\
-2 & 10 & -1 & 1 \\
1 & 0 & 1 & 5 \\
2 & -9 & 1 & 0
\end{array}\right)
$$

2. Express the 3×3 matrix

$$
\left(\begin{array}{rrr}
2 & 2 & 1 \\
-2 & 1 & 2 \\
-1 & 2 & -2
\end{array}\right)
$$

as a product of elementary matrices.
3. Find the matrix with respect to the standard basis of \mathbf{R}^{2} of the reflection in the line through the origin that has angle of elevation $\theta / 2$ (counterclockwise from the positive direction along the first coordinate axis).
4. Find the matrices for change of basis in both directions between the standard basis of \mathbf{R}^{3} and the basis formed by the columns of the matrix

$$
\left(\begin{array}{rrr}
3 & 2 & 4 \\
2 & -3 & 1 \\
3 & -6 & 1
\end{array}\right)
$$

5. Let f be the linear function from \mathbf{R}^{3} to \mathbf{R}^{3} given by $f(x)=M x$ where

$$
M=\left(\begin{array}{rrr}
1 & 5 & -2 \\
-2 & 4 & -3 \\
-1 & -3 & 1
\end{array}\right)
$$

Find the matrix of f relative to the basis of \mathbf{R}^{3} given by the columns of the matrix in the preceding exercise.

[^0]
[^0]: ${ }^{1}$ URI: http://math.albany.edu/math/pers/hammond/course/mat220s2008/mab.xhtml
 ${ }^{2}$ URI: http://math.albany.edu/math/pers/hammond/course/mat220s2008/mab.pdf

