Linear Algebra (Math 220) Assignment due Thursday, April 10

1 Preparation

Expect a quiz.

Relevant Reading:

Lay §§ 2.2, 3.2, 3.3 Hefferon § 3.IV

Bear in mind the following:

Definition. A square matrix is called an *elementary matrix* (or *elementary reduction matrix*) if it is the matrix that results from applying a single elementary row operation to an identity matrix of the same size.

2 Exercises

1. Describe the elementary row operations corresponding to each of the following elementary matrices:

(1	0	0	0)	(1	0	0	0 \	١	0	0	1	0 \	(1	0	0	0 \
0	1	0	3	0	-2	0	0		0	1	0	0		0	1	0	0
0	0	1	0	0	0	1	0		1	0	0	0		-2	0	1	0
$\int 0$	0	0	1 /	0	0	0	1 /	/	0	0	0	1 /		0	0	0	1 /

- 2. Find the determinants of each of the elementary matrices in exercise 1.
- 3. Find the inverses of each of the elementary matrices in exercise 1.
- 4. Find the product of the four elementary matrices in exercise 1.
- 5. Show that if E is an $m \times m$ elementary matrix and M is any $m \times n$ matrix, then the product matrix EM is the matrix obtained by applying the elementary row operation corresponding to E to the matrix M.
- 6. Show that if E is an $m \times m$ elementary matrix and M is any $m \times n$ matrix, then

$$\det(EM) = \det(E)\det(M) \quad .$$