Linear Algebra (Math 220) Assignment due Tuesday, April 1, 2008

1 Preparation

Expect a quiz.

Relevant Reading:

- Lay §§ 4.7, 6.1, 6.2
- Hefferon \S 3.V 3.VI

2 Exercises

1. Let \mathcal{P}_d denote the vector space of polynomials of degree d or less. If f is an element of \mathcal{P}_d , let I_f be the polynomial given by the formula

$$I_f(x) = \int_0^x f \quad .$$

- (a) Explain briefly why I_f is linear.
- (b) What is the kernel of I_f ?
- (c) In what set does the function I_f takes its values (regarding \mathcal{P}_d as its domain).
- (d) What is the image of I_f ?
- 2. What is the length of the line segment from the point (2, -1, 1) to the point (4, -4, 7)?
- 3. What is the angle at the point (0, 1, -1) in the triangle whose vertices are that point, the point (-1, 3, 1), and the point (3, 7, -3)?
- 4. Let M be the 2×3 matrix

$$M = \left(\begin{array}{rrr} 3 & 0 & -1 \\ 3 & -2 & 0 \end{array}\right) ,$$

and let f be the linear function from \mathbf{R}^3 to \mathbf{R}^2 that is defined by f(x) = Mx. Find a basis of the kernel of f consisting of vectors of length 1.

5. Find a basis consisting of mutually perpendicular vectors for the plane in \mathbb{R}^3 defined by the linear equation

$$2x - y + 2z = 0$$