Linear Algebra (Math 220)
 Assignment due Tuesday, April 1, 2008

1 Preparation

Expect a quiz.

Relevant Reading:

- Lay $\S \S$ 4.7, 6.1, 6.2
- Hefferon $\S \S 3 . V-3 . V I$

2 Exercises

1. Let \mathcal{P}_{d} denote the vector space of polynomials of degree d or less. If f is an element of \mathcal{P}_{d}, let I_{f} be the polynomial given by the formula

$$
I_{f}(x)=\int_{0}^{x} f
$$

(a) Explain briefly why I_{f} is linear.
(b) What is the kernel of I_{f} ?
(c) In what set does the function I_{f} takes its values (regarding \mathcal{P}_{d} as its domain).
(d) What is the image of I_{f} ?
2. What is the length of the line segment from the point $(2,-1,1)$ to the point $(4,-4,7)$?
3. What is the angle at the point $(0,1,-1)$ in the triangle whose vertices are that point, the point $(-1,3,1)$, and the point $(3,7,-3)$?
4. Let M be the 2×3 matrix

$$
M=\left(\begin{array}{rrr}
3 & 0 & -1 \\
3 & -2 & 0
\end{array}\right),
$$

and let f be the linear function from \mathbf{R}^{3} to \mathbf{R}^{2} that is defined by $f(x)=M x$. Find a basis of the kernel of f consisting of vectors of length 1 .
5. Find a basis consisting of mutually perpendicular vectors for the plane in \mathbf{R}^{3} defined by the linear equation

$$
2 x-y+2 z=0
$$

