Linear Algebra (Math 220) Assignment due Tuesday, March 11

Midterm Test: Tuesday, March 18

1 Preparation

Expect a quiz.

Suggested Reading:

- Lay § 4.7
- Hefferon §§ 3.IV 3.V

2 Exercises

1. Let g be the linear map from \mathbf{R}^4 to \mathbf{R}^4 that is defined by g(x) = Bx where B is the matrix

(1	2	-4	3	
	-2	-1	$^{-1}$	5	
	1	3	2	-1	
	1	1	-1	-1 /	

Find a 4×4 matrix C for which the linear map h given by multiplication by C has the property that both h(g(x)) = x and g(h(y)) = y for all x and all y in \mathbb{R}^4 .

- 2. Let f be a linear map from \mathbf{R}^3 to \mathbf{R}^3 for which
 - (a) f(1,0,0) = (1,2,3).
 - (b) f(0, 1/2, 0) = (3, 2, 1).
 - (c) f(-1, 0, 2) = (4, -6, 2).

Find all possible 3×3 matrices A for which the formula f(x) = Ax is valid for all x in \mathbb{R}^3 .

Hint: Use the rules for abstract linearity to work out what happens under f to (0, 1, 0) and (0, 0, 1).

3. For a given real number θ find a 2×2 matrix R_{θ} for which the linear function ρ defined by $\rho(x) = R_{\theta}x$ is the counterclockwise rotation of the plane through the angle of (radian) measure θ .

Hint: First work out the four special cases where θ takes the values 0, $\pi/2$, π , and $3\pi/2$.

4. Find a 3×3 matrix S for which the linear function σ given by $\sigma(x) = Sx$ is the reflection of \mathbf{R}^3 in the xz plane (where the 2nd coordinate y = 0).