Linear Algebra (Math 220) Assignment due Tuesday, March 11

Midterm Test: Tuesday, March 18

1 Preparation

Expect a quiz.
Suggested Reading:

- Lay § 4.7
- Hefferon §§ 3.IV - 3.V

2 Exercises

1. Let g be the linear map from \mathbf{R}^{4} to \mathbf{R}^{4} that is defined by $g(x)=B x$ where B is the matrix

$$
\left(\begin{array}{rrrr}
1 & 2 & -4 & 3 \\
-2 & -1 & -1 & 5 \\
1 & 3 & 2 & -1 \\
1 & 1 & -1 & -1
\end{array}\right) .
$$

Find a 4×4 matrix C for which the linear map h given by multiplication by C has the property that both $h(g(x))=x$ and $g(h(y))=y$ for all x and all y in \mathbf{R}^{4}.
2. Let f be a linear map from \mathbf{R}^{3} to \mathbf{R}^{3} for which
(a) $f(1,0,0)=(1,2,3)$.
(b) $f(0,1 / 2,0)=(3,2,1)$.
(c) $f(-1,0,2)=(4,-6,2)$.

Find all possible 3×3 matrices A for which the formula $f(x)=A x$ is valid for all x in \mathbf{R}^{3}.
Hint: Use the rules for abstract linearity to work out what happens under f to $(0,1,0)$ and $(0,0,1)$.
3. For a given real number θ find a 2×2 matrix R_{θ} for which the linear function ρ defined by $\rho(x)=R_{\theta} x$ is the counterclockwise rotation of the plane through the angle of (radian) measure θ.
Hint: First work out the four special cases where θ takes the values $0, \pi / 2, \pi$, and $3 \pi / 2$.
4. Find a 3×3 matrix S for which the linear function σ given by $\sigma(x)=S x$ is the reflection of \mathbf{R}^{3} in the $x z$ plane (where the $2^{\text {nd }}$ coordinate $y=0$).

