Linear Algebra (Math 220)
 Assignment due Tuesday, March 4

1 Preparation

Expect a quiz.

Relevant Reading:

- Lay $\S 1.7$ and $\S 4.3$
- Hefferon § 3.II - 3.III
- Matthews $\S \S 3.3-3.4$

2 Exercises

1. Which sets of column indices correspond to maximal linearly independent sets of columns in the following matrices?
(a)

$$
\left(\begin{array}{rr}
18 & -42 \\
-15 & 35
\end{array}\right)
$$

(b)

$$
\left(\begin{array}{rrr}
3 & -2 & 4 \\
-1 & 5 & 2 \\
5 & -12 & 0
\end{array}\right)
$$

(c)

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)
$$

2. Which sets of row indices correspond to maximal linearly independent sets of rows in the following matrices?
(a)

$$
\left(\begin{array}{rrrr}
1 & 2 & -4 & 7 \\
-2 & -1 & -1 & -8 \\
-1 & -4 & -14 & 5 \\
5 & 7 & -11 & 29
\end{array}\right)
$$

(b)

$$
\left(\begin{array}{rrrr}
1 & 2 & -4 & 7 \\
-2 & -1 & -1 & -8 \\
-3 & -6 & 12 & -21 \\
5 & 7 & -11 & 29
\end{array}\right)
$$

3. In the vector space of all differentiable functions of the real variable t find a maximal linearly independent subset in the subspace spanned by the 4 functions $\cos t, \sin t, \cos ^{2} t$, and $\sin ^{2} t$.
