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Recall that if S is a subset of n-dimensional space and P is a point of S we say that P is a point
in the interior of S or a point inside S if there is some (small) positive number r such that every
point of n-dimensional space within distance r of P is a point of S.

Recall that a function f of n variables is differentiable at a point inside its domain if it admits
first order approximation by a linear function near the given point.

Theorem: If a function f of n variables has an extreme value for the subset S of its domain at
a point P of S that is a point inside the domain of f where f is differentiable, then the gradient
vector ∇f(P ) of f at P must be perpendicular to the tangent vector at P of every differentiably
parameterized curve lying in S and passing through P .

Proof. Let G(t) be a differentiably parameterized curve contained in S and passing through P
when t = a. Since S is contained in the domain of f , the function h(t) = f(G(t)) is defined for
all values of t for which G(t) is defined, and since f is differentiable at P = G(a), the function h
is differentiable at a. In fact, the “chain rule” tells us that

h′(a) = ∇f(P ) · G′(a) .

Since f has an extreme value relative to the set S at the point P and each G(t) is in S, it
follows that h, a function of one variable, has a local extreme value at t = a, and, therefore, that
h′(a) = 0. Consequently, ∇f(P ) is perpendicular to the tangent vector G′(a) of the curve at
P .

Corollary 1. If a function f of n variables has an extreme value for the subset S of its domain
at a point P of S that is a point inside S where f is differentiable, then the gradient vector ∇f(P )
must be the zero vector.

Proof. If P is a point inside S then every sufficiently short line segment passing through P must
be perpendicular to ∇f(P ), which means that every vector must be perpendicular to ∇f(P ).

Corollary 2. If a function f of n variables has an extreme value for the subset S = {g = 0} of
its domain at a point P of S where f and g are differentiable functions, then the gradient ∇f(P )
of f and the gradient ∇g(P ) of g must be parallel vectors.

Proof. The statement is formally true, but probably useless if ∇g(P ) = 0. We assume that
∇g(P ) is not the zero vector. In this case ∇g is perpendicular to the tangent hyperplane (i.e.,
plane if n = 3 or line if n = 2) to S at P . Every unit vector in the tangent hyperplane is
tangent to some small differentiably parameterized curve segment lying in S and passing through
P . Hence, by the theorem, ∇f(P ) is also perpendicular to each such curve segment, and, hence,
to the tangent hyperplane. Since a hyperplane has only one parallel class of normal vectors,
∇f(P ) and ∇g(P ) must be parallel.

Remark. The theorem is useful also in the case where f is a function of 3 variables and the
constraint set S is a curve in space. Then the fact that P lies in S corresponds roughly to
two equations for P and the orthogonality condition of the theorem provides, in non-degenerate
situations an additional equation with the result that (usually) only finitely many such P are
possible. (Among these are points that are maxima, minima, and those that are neither.) This
is equivalent to the principle of “Lagrange multipliers” discussed in the text.

Document network location for HTML:
http://math.albany.edu:8000/math/pers/hammond/course/mat214/extremes.html


