Math 214
 Follow-Up Assignment

May 13, 2002

1. Find the gradient vector of the function f that is defined by

$$
f(x, y, z)=x^{4} y^{2}-y^{3} z^{2}+z x
$$

Response:

$$
(\nabla f)(x, y, z)=\left(4 x^{3} y^{2}+z, 2 x^{4} y-3 y^{2} z^{2},-2 y^{3} z+x\right)
$$

2. Find the divergence of the vector field F that is defined by

$$
F(x, y, z)=\left(z^{3} x, x^{3} y, y^{3} z\right)
$$

Response:

$$
\frac{\partial}{\partial x}\left(z^{3} x\right)+\frac{\partial}{\partial y}\left(x^{3} y\right)+\frac{\partial}{\partial z}\left(y^{3} z\right)=z^{3}+x^{3}+y^{3}
$$

3. Find the double integral of the function $f(x, y)=x y^{2}$ on the rectangle, having sides parallel to the coordinate axes, with diagonally opposite vertices at the points $(-1,1)$ and $(5,3)$.
Response: The rectangle, say E, is described by the inequalities

$$
\left\{\begin{array}{r}
-1 \leq x \leq 5 \\
1 \leq y \leq 3
\end{array}\right.
$$

Thus,

$$
\begin{aligned}
\iint_{E} x y^{2} d A & =\int_{-1}^{5} \int_{1}^{3} x y^{2} d y d x \\
& =\int_{-1}^{5} x\left(\int_{1}^{3} y^{2} d y\right) d x \\
& =\int_{-1}^{5} x \cdot\left[\frac{y^{3}}{3}\right]_{y=1}^{y=3} d x \\
& =\int_{-1}^{5} x \cdot\left(9-\frac{1}{3}\right) d x \\
& =\frac{26}{3} \int_{-1}^{5} x d x \\
& =\frac{26}{3}\left[\frac{x^{2}}{2}\right]_{x=-1}^{x=5} \\
& =\frac{26}{3}\left(\frac{5^{2}}{2}-\frac{(-1)^{2}}{2}\right) \\
& =104
\end{aligned}
$$

4. Find the tangent plane at the point $(3,-1,2)$ to the surface

$$
x y^{2} z=6
$$

Response: The chief task here is to find a vector normal to the tangent plane to be used as coefficient vector in the equation for the plane. Since the surface is a level set of the function

$$
f(x, y, z)=x y^{2} z
$$

the gradient ∇f of f at the given point must be normal to the tangent plane at that point (unless it vanishes).

$$
\begin{aligned}
(\nabla f)(x, y, z) & =\left(y^{2} z, 2 x y z, x y^{2}\right) \\
(\nabla f)(3,-1,2) & =(2,-12,3)
\end{aligned}
$$

Hence, the tangent plane has an equation of the form

$$
2 x-12 y+3 z=\text { constant }
$$

Using the fact that $(3,-1,2)$ must satisfy this equation, one obtains the equation

$$
2 x-12 y+3 z=24
$$

5. Find the arc length of the helix that is given parametrically by

$$
\left\{\begin{array}{l}
x=4 \sin t \\
y=4 \cos t \\
z=3 t
\end{array}\right.
$$

for $0 \leq t \leq \pi / 2$.
Response: This involves a straightforward application of the definition of the length of a parameterized path as the integral of the length of the derivative of a point on the path with respect to the the parameter:

$$
\begin{aligned}
\int_{C} d s & =\int_{C}\|(d x, d y, d z)\| \\
& =\int_{0}^{\pi / 2}\left\|\left(\frac{d x}{d t}, \frac{d y}{d t}, \frac{d z}{d t}\right)\right\| d t \\
& =\int_{0}^{\pi / 2}\|(4 \cos t,-4 \sin t, 3)\| d t \\
& =\int_{0}^{\pi / 2} \sqrt{4^{2}\left(\cos ^{2} t+\sin ^{2} t\right)+3^{2}} d t \\
& =\int_{0}^{\pi / 2} 5 d t \\
& =\frac{5 \pi}{2}
\end{aligned}
$$

6. Find the path integral of the vector field F that is defined by

$$
F(x, y, z)=(x-2 z, y+z, 1-y)
$$

over the path given by

$$
R(t)=\left(t^{3}, t, t^{2}\right)
$$

for $0 \leq t \leq 2$.
Response: This involves a straightforward application of the definition of the integral over
a parameterized path of a vector field:

$$
\begin{aligned}
\int_{C} F d R & =\int_{0}^{2} F(R(t)) \cdot R^{\prime}(t) d t \\
& =\int_{0}^{2}\left(t^{3}-2 t^{2}, t+t^{2}, 1-t\right) \cdot\left(3 t^{2}, 1,2 t\right) d t \\
& =\int_{0}^{2}\left(\left(3 t^{5}-6 t^{4}\right)+\left(t^{2}+t\right)+\left(-2 t^{2}+2 t\right)\right) d t \\
& =\int_{0}^{2}\left(3 t^{5}-6 t^{4}-t^{2}+3 t\right) d t \\
& =\left[\frac{t^{6}}{2}-\frac{6 t^{5}}{5}-\frac{t^{3}}{3}+\frac{3 t^{2}}{2}\right]_{t=0}^{t=2} \\
& =32-\frac{192}{5}-\frac{8}{3}+6 \\
& =-\frac{46}{15} .
\end{aligned}
$$

7. Find the equation of the plane containing the point $(-1,3,2)$ that is normal to the line defined by the two equations

$$
\left\{\begin{array}{l}
3 x-4 y+2 z=7 \\
9 x-5 y-3 z=2
\end{array} .\right.
$$

Response: A key fact for this problem is that a single linear equation in 3 variables is the equation of a plane in space, and the coefficient vector of such an equation is a (unique up to a scalar multiple) normal vector to that plane.
Since a point in the required plane is given, one only needs to find a vector normal to the plane, which is the same thing as a vector parallel to the given line. The line is given as the intersection of two planes, and any normal to either plane must be normal to a vector parallel to their line of intersection. Thus a vector parallel to the line may be obtained as the "cross product" of normals to the two different planes, provided that vector is not 0 - which happens when and only when the two planes are parallel and, therefore, do not determine a line of intersection.
One finds:

$$
(3,-4,2) \times(9,-5,-3)=(22,27,21) .
$$

Hence, the required plane has an equation of the form

$$
22 x+27 y+21 z=\text { constant }
$$

and the constant is determined by the fact that the given point must satisfy the equation:

$$
22 \cdot-1+27 \cdot 3+21 \cdot 2=-22+81+42=101
$$

Hence, the required plane has the equation:

$$
22 x+27 y+21 z=101
$$

8. Find the centroid of the solid cone

$$
x^{2}+y^{2} \leq z^{2}, \quad 0 \leq z \leq 2 .
$$

Response: The lateral boundary of the solid cone, given by $x^{2}+y^{2}=z^{2}$, is the surface obtained by rotating the line $z=y$ in the plane $x=0$ about the z-axis. Thus, for $z \geq 0$ the section of the solid cone by the plane normal to the z-axis through the point $(0,0, z)$ is the disk of radius z with center $(0,0, z)$. The radius of this (inverted) cone's base, as well as its altitude, is 2 , and, therefore its volume is

$$
\frac{1}{3} \pi a^{2} h=\frac{8 \pi}{3} .
$$

By symmetry its centroid lies on the z-axis, and the only issue is what is its z-coordinate:

$$
\begin{aligned}
\bar{z} & =\frac{1}{\text { volume }} \iiint z d V \\
& =\frac{3}{8 \pi} \int_{0}^{2} z d z \iint_{x^{2}+y^{2} \leq z^{2}} d x d y \\
& =\frac{3}{8 \pi} \int_{0}^{2} z \cdot(\text { Area of disk of radius } z) d z \\
& =\frac{3}{8 \pi} \int_{0}^{2} \pi z^{3} d z \\
& =\frac{3}{8} \cdot 4 \\
& =\frac{3}{2}
\end{aligned}
$$

Hence, the centroid of the cone is the point $(0,0,3 \pi / 2)$.
9. Find the surface integral of the vector field F over the sphere, oriented by its outer normal, of radius 3 with center at the origin when F is given by

$$
F(x, y, z)=\left(x^{3}, y^{3}, z^{3}\right)
$$

Response: The vector field is well-behaved everywhere, particularly in the ball surrounded by the given sphere. The divergence theorem may be applied.

$$
(\operatorname{div} F)(x, y, z)=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \cdot F=\frac{\partial}{\partial x}\left(x^{3}\right)+\frac{\partial}{\partial y}\left(y^{3}\right)+\frac{\partial}{\partial z}\left(z^{3}\right)=3\left(x^{2}+y^{2}+z^{2}\right)
$$

Therefore,

$$
\iint_{S} F \cdot N d \sigma=\iiint_{B} \operatorname{div} F d V
$$

In polar coordinates, observing that $d V=\rho^{2} \sin \phi d \rho d \phi d \theta$ and that $\operatorname{div} F=3 \rho^{2}$, the triple integral with radius $a=3$ becomes:

$$
3 \int_{0}^{2 \pi} d \theta \int_{0}^{\pi} \sin \phi d \phi \int_{0}^{3} \rho^{4} d \rho
$$

which evaluated becomes

$$
\frac{12 \pi}{5} a^{5}=\frac{2916 \pi}{5}
$$

10. For a conservative vector field in the plane what can be said about its integral over the circle, traversed counterclockwise, of radius 2 with center at the point (3, 4)? Explain your answer.
Response: Because conservative in this context means that the vector field is the gradient of a scalar, one may use the formula

$$
\int_{C} \nabla f=f(B)-f(A)
$$

where A and B are, respectively, the initial and final points of an oriented curve C. A trip around a circle, no matter where it begins, will end where it begins. Thus, $A=B$, and the integral of a vector field that is conservative in the plane around any circle must be zero.

