Affine 3-folds and tetrahedra in 4-space

September 16, 2008

Definition. An affine r-fold in \mathbf{R}^{n} is a subset of \mathbf{R}^{n} of the form

$$
\begin{equation*}
a+t_{1} v_{1}+t_{2} v_{2}+\ldots+t_{r} v_{r} \quad \text { with } t_{1}, t_{2}, \ldots, t_{r} \text { varying in } \mathbf{R} \tag{1}
\end{equation*}
$$

where a is a given point in \mathbf{R}^{n} and $v_{1}, v_{2}, \ldots, v_{n}$ are given vectors in \mathbf{R}^{n} subject to the condition that none of the vectors v_{j} may be omitted without changing the set (1).

The following data determine a plane, i.e., an affine 2-fold, in \mathbf{R}^{4} :

Example 1.

$$
\begin{equation*}
a=(1,-2,0,1) ; \quad v_{1}=(1,2,1,3), v_{2}=(2,-1,1,0) \tag{2}
\end{equation*}
$$

Moreover, if one takes

$$
b=a+v_{1}=(2,0,1,4) \text { and } c=a+v_{2}=(3,-3,1,1)
$$

then a, b, and c are the vertices of triangle $T=a b c$ in \mathbf{R}^{4}, which is the set of all points
Example 2.

$$
(1,-2,0,1)+t(1,2,1,3)+u(2,-1,1,0) \quad \text { with } t, u \geq 0 \text { and } t+u \leq 1
$$

Equivalently, T is the set of all points

$$
s(1,-2,0,1)+t(2,0,1,4)+u(3,-3,1,1) \quad \text { with } s, t, u \geq 0 \text { and } s+t+u=1
$$

What is the area of T ? The idea is that the plane (2) is a normal Euclidean plane where lengths and angles may be computed using the dot product in \mathbf{R}^{4}. Thus the area of the triangle is half the product of the length of a base and the length of the altitude drawn to that base. If we take the side $a b$ as base, then its length is $\|b-a\|=\left\|v_{1}\right\|=\sqrt{15}$. For the altitude drawn from c to $a b$, one observes that in the decomposition of the vector

$$
\overrightarrow{a c}=v_{2}
$$

as a sum of components parallel and perpendicular to v_{1} the perpendicular component lies over the altitude drawn from c to $a b$. One finds

$$
\begin{align*}
\operatorname{proj}_{v_{1}}\left(v_{2}\right) & =\frac{1}{15}(1,2,1,3) \\
\operatorname{perp}_{v_{1}}\left(v_{2}\right) & =\frac{1}{15}(29,-17,14,-3) \tag{3}
\end{align*}
$$

So the area of T is given by

$$
A=\frac{1}{2} B h=\frac{1}{2} \sqrt{15}\left(\frac{\sqrt{1335}}{15}\right)=\frac{1}{2} \sqrt{89}
$$

If, in addition to the point a and the vectors v_{1}, v_{2}, one brings another vector $v_{3}=(-1,3,2,-1)$ into the picture, then one has data determining an affine 3 -fold in \mathbf{R}^{4} :

Example 3.

$$
\begin{equation*}
a=(1,-2,0,1) ; \quad v_{1}=(1,2,1,3), v_{2}=(2,-1,1,0), v_{3}=(-1,3,2,-1) \tag{4}
\end{equation*}
$$

Just as an affine 2 -fold in \mathbf{R}^{3}, i.e., a plane, may be described alternatively as the set of all points satisfying a single linear equation, an affine 3 -fold in \mathbf{R}^{4} - and, more generally, an affine $(n-1)$-fold in \mathbf{R}^{n} - may be described as the set of all points satisfying a single linear equation in which the vector of coefficients of the coordinates is a vector that is perpendicular to the 3 -fold. To find the equation for the present example one begins by looking for a vector u that is perpendicular to each of the vectors v_{1}, v_{2}, and v_{3}. The relations $u \cdot v_{1}=0, u \cdot v_{2}=0$, and $u \cdot v_{3}=0$ amount to 3 equations for the coefficients of u and to make u specific one may add the equation $u_{4}=1$. Thus,

$$
\begin{aligned}
u_{1}+2 u_{2}+u_{3}+3 u_{4} & =0 \\
2 u_{1}-u_{2}+u_{3} & =0 \\
-u_{1}+3 u_{2}+2 u_{3}-u_{4} & =0 \\
u_{4} & =1
\end{aligned}
$$

Solution of this system of 4 equations yields:

$$
u=(-9 / 5,-8 / 5,2,1)
$$

and to eliminate denominators without changing the direction of this vector, one may replace it with its scalar multiple by -5 :

$$
u=(9,8,-10,-5)
$$

Therefore, this affine 3 -fold has equation of the form

$$
9 x_{1}+8 x_{2}-10 x_{3}-5 x_{4}=\text { constant }
$$

and the constant is determined by evaluating the left side at the point a. Thus the equation of this "hyperplane" is:

$$
9 x_{1}+8 x_{2}-10 x_{3}-5 x_{4}=-12
$$

The affine 3 -fold contains, in particular, the following 4 points:

$$
a=(1,-2,0,1), b=a+v_{1}=(2,0,1,4), c=a+v_{2}=(3,-3,1,1), d=a+v_{3}=(0,1,2,0)
$$

and these four points are the vertices of the tetrahedron $a b c d$ that sits inside a copy of \mathbf{R}^{3} that itself is a hyperplane in \mathbf{R}^{4}. What is the volume of this tetrahedron?

If we take the triangle $a b c$ as "base" with area $A=(1 / 2) \sqrt{89}$, as previously calculated, principles from school geometry indicate the volume of the tetrahedron should be given by the formula

$$
\begin{equation*}
V=\frac{1}{3} A h \tag{5}
\end{equation*}
$$

where h is the "altitude" drawn from the vertex d to the base. The idea for finding the altitude is to decompose the vector $v_{3}=\overrightarrow{a d}$ into the sum $w^{\prime}+w^{\prime \prime}$ of two components, with w^{\prime} in the base and $w^{\prime \prime}$ perpendicular to the base. Thus,

$$
w^{\prime}=t v_{1}+u v_{2} \quad \text { and } \quad w^{\prime \prime}=v_{3}-t v_{1}-u v_{2}
$$

while the condition $w^{\prime \prime} \perp \Delta a b c$ gives the two conditions $w^{\prime \prime} \cdot v_{1}=0$ and $w^{\prime \prime} \cdot v_{2}=0$ which amount to a pair of linear equations for the two scalars t and u. One finds $t=27 / 89$ and $u=-49 / 89$ with the result that

$$
w^{\prime}=(1 / 89)(-71,103,-22,81) \quad w^{\prime \prime}=(1 / 89)(-18,164,200,-170)
$$

and, therefore,

$$
h=\left\|w^{\prime \prime}\right\|=\frac{6 \sqrt{30}}{\sqrt{89}}
$$

Applying the formula (5), one sees that the volume of the tetrahedron $a b c d$ is $\sqrt{30}$.

