El Gamal Cryptography on an Elliptic Curve

Revised: April 28, 2009

1 Introduction

In the following ℓ will denote a prime greater than 2, and $\mathbb{F}_\ell \cong \mathbb{Z}/\ell\mathbb{Z}$ the field of integers modulo ℓ. We will be talking about “addition”, as previously studied, on a cubic curve E given in Weierstrass form, i.e., $y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$, with coefficients in \mathbb{F}_ℓ, and points (x, y) of E will be pairs of elements x, y in \mathbb{F}_ℓ. A reference for this material is the book *A Course in Number Theory and Cryptography* by Neal Koblitz, published in 1987 by Springer. Some information may also be found online; for example, one might look at Wikipedia.

The basic idea is to use the El Gamal method — which makes sense for a (large) finite cyclic group. The case where the finite cyclic group is the multiplicative group $(\mathbb{Z}/p\mathbb{Z})^*$ for some odd prime p was discussed previously in the course. Here the task is to use the method with a cyclic subgroup of the points on an elliptic curve over \mathbb{F}_ℓ, when ℓ is an odd prime.

2 Representing characters by points on a curve

As before, characters are represented by numbers; in particular, characters and standard symbols in U.S. English may be represented by their ASCII codes, which are integers from 0 to 127. The question here is how to represent a number N in this range by a point of E. In the first place ℓ must be large enough that E contains at least 127 points. Since for a point (x, y) of E the second coordinate y is the root of a quadratic polynomial in the first coordinate x, letting x be N and then solving for y will not lead to a root y in \mathbb{F}_ℓ unless the discriminant of the corresponding quadratic equation is the square of an element of \mathbb{F}_ℓ. Precisely half of the non-zero elements of \mathbb{F}_ℓ are squares, so the discriminant will be a square roughly half the time. Because of that x cannot simply be N but rather something determined by N that offers a range of possible values of x.

One chooses an integer m so that $1/2^m$ is an acceptably small probability of failure to find a y for given x. The idea then is, for a given value N, to try as many as m different values of x until there is found a y with (x, y) on E. The values of x one tries are

$$x = mN + j, \quad 1 \leq j \leq m.$$

The event that one does not find a y after trying all m of these values has probability $1/2^m$. If a y is found, then the point $p = (x, y)$ becomes the point of the curve representing the number N. There is no secrecy in this. The original number N may be recovered from p as the largest integer strictly smaller than x/m or

$$N = \text{floor}\left(\frac{\text{lift}(x) - 1}{m}\right)$$

where the function lift returns the least non-negative residue of an integer mod. It is necessary that \(\ell \geq 128m \) if this method is to be viable for representing integers \(0 \leq N \leq 127 \) by a point on a given curve \(E \) over \(\mathbb{F}_l \).

3 Encoding points on a curve

Inasmuch as the basic El Gamal technique needs a cyclic group, in order to be sure that the points on an elliptic curve obtained by the method of the previous section to represent codes all lie in a cyclic subgroup of \(E(\mathbb{F}_l) \), it is almost necessary to choose \(l \) and \(E \) so that the entire group \(E(\mathbb{F}_l) \) is cyclic. This is, in particular, the case if the size of \(E(\mathbb{F}_l) \) is square-free.

Here the question is encoding for secrecy of the points on a curve. Suppose that \(b \) is a point, regarded as the “base”, of large order relative to the arithmetic on \(E \). This applies, in particular, when the group of points of \(E \) in \(\mathbb{F}_l \) is cyclic and \(b \) is a generator. For example, if the number of all points \(|E| \) of \(E \) happens to be prime, which is far from always true, then any point \(b \) of \(E \) other than the origin has order \(|E| \). As suggested above, for any \(E \) the number \(|E| \) of its points is usually somewhere around \(\ell \) since there are two points on \(E \) for each of the roughly \(\ell/2 \) values of \(x \) for which there is a \(y \) except for the case when \(x \) leads to a quadratic equation for \(y \) having discriminant 0. In this scheme a single point \(p \) on \(E \) will be encrypted by a pair \((q, r) \) where both \(q \) and \(r \) are points of \(E \).

The designer of the scheme picks the prime \(\ell \), the curve \(E \), a “base point” \(b \) on \(E \) of large order, all of which are to be public, and a secret element \(j \) of \(\mathbb{F}_l \). With those items fixed, the designer publishes one more point \(c \) on \(E \) that is determined by the formula \(c = j b \). For given \(\ell \) and \(E \), the scheme’s “public key” is the pair of points \(b \) and \(c \) on \(E \).

A user of this scheme may encode a point \(p \) of \(E \) as follows: (i) draw a random value \(k \) modulo the order of \(b \) and then (ii) produce the pair of points \((q, r) \) using the formulae:

\[
q = kb \\
r = p + kc
\]

Anyone who knows the secret value \(j \) as well as the published data may recover the original point \(p \) from the pair \((q, r) \) using the simple formula

\[
p = r - jq
\]

Security for this system relies on it being difficult to ascertain \(j \) even though \(b \) and \(c \) are both known.