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1 Introduction.

The purpose of this expository lecture is to explain the basic ideas under-
lying the final resolution of “Fermat’s Last Theorem” after 356 years as a
consequence of the reported establishment by Andrew Wiles of a sufficient
portion of the “Shimura-Taniyama-Weil” conjecture. As these notes are be-
ing written, the work of Wiles is not available, and the sources of information
available to the author are (1) reports by electronic mail, (2) the AMS No-
tices article [16] of K. Ribet, and (3) a preprint [18] by K. Rubin and A.
Silverberg based on the June, 1993 lectures of Wiles at the Newton Institute
in Cambridge, England. It should be noted that the fact that “Fermat’s Last
Theorem” is a consequence of sufficient knowledge of the theory of “elliptic
curves” has been fully documented in the publications ([14], [15]) of K. Ribet.

“Fermat’s Last Theorem” is the statement, having origin with Pierre
de Fermat in 1637, that there are no positive integers x, y, z such that
xn + yn = zn for any integer exponent n > 2. Obviously, if there are no
positive integer solutions x, y, z for a particular n, then there are certainly
none for exponents that are multiples of n. Since every integer n > 2 is
divisible either by 4 or by some odd prime p, it follows that “Fermat’s Last
Theorem” is true if there are no solutions in positive integers of the equation
xn + yn = zn when n = 4 and when n = p for each prime p > 2. The cases
n = 3, 4 are standard fare for textbooks (e.g., see Hardy & Wright [6]) in
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elementary number theory. Therefore, this discussion will focus on the case
n = p where p > 3 is prime.

Very briefly, the idea is that we now know enough about the classification
of non-degenerate plane cubic curves F (x, y) = 0 in two variables, also known
as “elliptic curves”, with rational coefficients to know how to enumerate them
in a logical way so that we may conclude that if there were positive integers
a, b, c with ap + bp = cp, then the curve

y2 = x(x− ap)(x+ bp),

which is an elliptic curve known as the “Frey curve”, would fall inside of the
enumeration. Because the classification is enumerative, when one is presented
with a particular elliptic curve with rational coefficients, one knows where to
look for the curve in the classification. The curve just written is not to be
found within the classification. As a consequence there cannot be positive
integers a, b, c with ap + bp = cp.

The enumerative classification of non-degenerate plane cubic curves de-
fined by polynomials with rational coefficients has been entirely conjectural
(variously known as the “Taniyama Conjecture”, the “Weil Conjecture”, the
“Taniyama-Shimura Conjecture”, . . .) until June, 1993. This conjecture,
even as a conjecture, has served as an important motivating example for the
idea of the “Langlands Program”, or perhaps of an extension of that pro-
gram, that certain kinds of objects in geometry should give rise to certain
group representations.

What seems to be believed today1 is that the portion of the enumerative
classification pertaining to “semi-stable” elliptic curves has been proved by
Andrew Wiles. That the existence of positive integers a, b, c with ap + bp = cp

would violate the enumerative classification of semi-stable elliptic curves was
established by 1987 through the work of G. Frey, J.-P. Serre, and K. Ribet.

The primary purpose of this lecture is to explain the enumerative classi-
fication of elliptic curves and to give a brief indication of the mathematics
involved in showing that the Frey curve violates that classification.

1As of the time of this write-up Wiles has stated that a portion of what he announced
in June needs further justification and that he expects to be able to complete it. See the
appendix.
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2 Elliptic curves

A polynomial f(X, Y ) of degree d in two variables with coefficients in a field
k gives rise to what is called an affine plane curve of degree d: for each field K
containing k (more generally, for each commutative ring that is a k-algebra)
one has the set

C0(K) = {(x, y) ∈ K2|f(x, y) = 0},

and for each k-linear homomorphism K −→ K ′ one has the induced map
C0(K)→ C0(K ′). From the polynomial f one obtains a homogeneous poly-
nomial of degree d in three variables with coefficients in k:

F (X,Y, Z) = Zdf(X/Z, Y/Z),

and the projective plane curve of degree d:

C(K) = {((x, y, z)) ∈ P2(K)|F (x, y, z) = 0},

where PN(K) denotes N -dimensional projective space, which is the quotient
set of KN+1 − {0} obtained by identifying points lying on the same line
through the origin of KN+1. Since the projective plane P2(K) is the disjoint
union of the affine plane {((x, y, 1))|(x, y) ∈ K2} with the “(projective) line
at infinity” {((x, y, 0))|((x, y)) ∈ P1(K)}, it follows that C(K) is the disjoint
union of C0(K) with the finite set of its points lying on the projective line at
infinity.

An elliptic curve defined over k is the (projective) plane curve E given by
a homogeneous polynomial F of degree 3 in three variables with coefficients
in k such that (i) F is irreducible over the algebraic closure k of k, (ii) the

gradient vector ∇F is a non-vanishing vector at points of k
3 − {0} where F

vanishes, and (iii) the set E(k) is non-empty.
If k is any field, then after an isomorphism (see Silverman [27]) one may

obtain a given elliptic curve E with an affine equation of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 . (1)

Then the homogeneous equation for the intersection of E(K) with the line
at infinity is

x3 = 0 . (2)
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Thus, in this case, E has a unique point on the line at infinity. If the
characteristic of k is different from 2 and 3† then one may obtain an equation
in “Weierstrass normal form”:

y2 = 4x3 − g2x− g3 , (3)

which is non-singular if and only if the cubic polynomial in the variable x
has distinct roots in k.

Elliptic curves are the “group objects” in the category of algebraic curves
that reside in projective space: for each extension field K of k the set E(K)
of “K-valued points” of E is an abelian group. The group law on E(K) is
characterized by two conditions:

1. The origin is a given point of E(k).

2. The points obtained by intersecting E(K) with any line in P2(K),
counted with multiplicities, add up to zero.

When E is given by an equation in the form (1), the origin is usually
taken to be the unique point on the line at infinity. If two distinct points of
E(K) are given, they determine a line in P2(K); the intersection of that line
with E(K) is given by a cubic polynomial in a parameter for the line which
has two roots in K corresponding to the two given points; hence, there is a
third root of that cubic polynomial in K; this root gives rise to a point of
E(K), which is the negative of the sum of the two given points. The negative
of a given point of E(K) is obtained as the third point in the intersection
with E(K) of the line through the given point and the origin.

For a given field k the set of homogeneous cubic polynomials in three
variables is a vector space over k having the set of “monomials” of degree
three in three variables as basis. Thus, the dimension of the space of homo-
geneous cubics is 10. The linear group GL3(k) acts on the space of cubics,
and two cubic curves in P2 that are related by this action are isomorphic.
Since GL3(k) is 9-dimensional, one is led to think of the family of isomor-
phism classes of elliptic curves as 1-dimensional since “non-singularity” is an
“open” condition.

†Thus, one sees that the primes 2 and 3 play a special role in the theory of elliptic
curves.
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3 Elliptic curves over C

When k is the field C of complex numbers, one knows (see, e.g., Ahlfors [1])
that for each lattice Λ in C the set of Λ-periodic meromorphic functions on
the complex line C is the field C(℘, ℘′), which is a quadratic extension of
the rational function field C(℘), where ℘ is the ℘-function of Weierstrass.
Moreover, ℘ satisfies the famous Weierstrass differential equation

℘′(z)2 = 4℘(z)3 − g2(Λ)℘(z)− g3(Λ); (4)

thus, the formula z 7→ (℘(z), ℘′(z)) defines a holomorphic map from the punc-
tured complex torus C/Λ− {0} to the affine cubic curve

y2 = 4x3 − g2(Λ)x− g3(Λ); (5)

it should hardly be necessary to point out that this map extends to a holo-
morphic map from the torus C/Λ to the corresponding (projective) elliptic
curve by sending the origin of the torus to the unique point of the elliptic
curve on the line at infinity. The classical theory of theta functions (see, e.g.,
Igusa [7] or Siegel [26]) leads to a direct demonstration that this map is a
homomorphism from the group law on the complex torus to the group law
previously described for an elliptic curve. It is not difficult to see that the
analytic manifold given by any elliptic curve defined over C arises from some
complex torus. Indeed each non-singular cubic curve E in P2(C) determines
a compact connected complex-analytic group. Its universal cover is given by
a holomorphic homomorphism C→ E which has some lattice as kernel.

Any two lattices in C are related by a change of real basis for C, i.e., by
a matrix in GL2(R). Consequently, there is only one real-analytic isomor-
phism class for the complex torus C/Λ as Λ varies. The tori corresponding
to two lattices are complex-analytically isomorphic if and only if the corre-
sponding real-linear isomorphism of R2 satisfies the Cauchy-Riemann partial
differential equations, i.e., if and only if the R-linear isomorphism is C-linear.

A lattice Λ may be represented concretely by an ordered basis {ω1, ω2}.
If τ = ω2/ω1, then τ is not real, and after permuting the basis members,
if necessary, one may assume that τ is in the “upper-half plane”3 H of C.
Observing that Λ is the image under the C-linear map z 7→ ω1z of the lattice

3The fact that the half-plane is a model of non-Euclidean geometry led a popular
columnist in November, 1993 to question the validity of the work being discussed here.
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with ordered basis {1, τ}, one may assume that Λ is this latter lattice. Let
E(τ) be the complex torus C/Λ. Allowing for change of basis subject to
these assumptions on the basis, one sees that there is an isomorphism of
complex-analytic groups E(τ ′) ∼= E(τ) if

τ ′ =
aτ + b

cτ + d
, (6)

for some matrix

γ =

(
a b
c d

)
∈ SL2(Z).

Conversely, the monodromy principle may be used to show that every complex-
analytic isomorphism among the complex tori E(τ) arises in this way.

The coefficients g2 and g3 in the Weierstrass normal form (5) have very
explicit constructions as infinite series (see, e.g., Ahlfors [1] or Serre [20])
determined by the given lattice; from this it is straightforward to see that gw
is a modular form of weight 2w: if τ and τ ′ are related by (6), then

gw(τ ′) = (λ)2wgw(τ), λ = cτ + d .

Consequently, the map
(x, y) 7→ (λ2x, λ3y)

carries the curve given by (5) for τ isomorphically to the curve given by (5) for
τ ′. The discriminant of the cubic polynomial in the Weierstrass normal form
(5) is a modular form of weight 12, which up to a multiplicative constant, is:

∆(τ) = g3
2 − 27g2

3 .

∆ is a non-vanishing holomorphic function in H. The modular invariant j
([20],[24]) is defined by:

j(τ) =
(12g2)3

∆
;

it is a holomorphic function in the upper-half plane H with the property that

j(τ) = j(τ ′)

if and only if τ and τ ′ are related by (6). Furthermore, j assumes every value
in C at some point of H. Consequently, the complex-analytic isomorphism
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classes of complex tori or, equivalently, the isomorphism classes of elliptic
curves defined over C, are parameterized via j in a one-to-one manner by the
complex numbers.

Since this is an expository discourse, it is hoped that the reader will
not feel patronized by having noted the fact that the coincidence of (1) the
category of elliptic curves over C and (2) the category of complex tori is
the “genus one” case of the coincidence (see Weyl [33]) of (i) the category
of “complete” non-singular algebraic curves over C and (ii) the category
of compact Riemann surfaces (one-dimensional connected complex-analytic
manifolds).

Although the classification of elliptic curves over C via the j-function is
a result that is both beautiful and useful, and although two elliptic curves
defined over Q that are isomorphic as curves defined over Q give rise to
elliptic curves defined over C that have the same j-invariant, it is not true
that any two elliptic curves defined over Q having the same j-invariant are
isomorphic over Q. Thus, the classification of elliptic curves over C does
not lead directly to the desired enumerative classification of elliptic curves
defined over Q, but it does bring to the fore the notion of modular form,
which is central in the study of elliptic curves defined over Q. What can be
said easily is that, according to the Shimura-Taniyama-Weil conjecture, the
isogeny classes of elliptic curves defined over Q are parameterized by certain
modular forms.

4 Modular forms

The group SL2(Z) is an infinite group that is generated by the two elements(
0 1
−1 0

)
,

(
0 −1
1 1

)
,

which have orders 4 and 6 respectively. The action of SL2(Z) on the upper-
half plane H by linear fractional transformations has kernel{

±
(

1 0
0 1

)}
,
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and the quotient of SL2(Z) by this kernel is the group PSL2(Z). It is not
difficult to see that the set

{τ ∈ H | − 1/2 ≤ Re(τ) ≤ 1/2, |τ | ≥ 1}

is a “fundamental domain” for the action of PSL2(Z) on H. More precisely,
this set meets each orbit, and the only redundancies are the boundary iden-
tifications arising from the maps τ 7→ τ + 1 and τ 7→ −1/τ . The quotient
H/PSL2(Z) is not compact since the fundamental domain is “open at the
top”. Beyond that the modular invariant j induces a bicontinuous biholo-
morphic isomorphism of the quotient H/PSL2(Z) with the affine line over C.
Since j(τ + 1) = j(τ), and since for q = e2πiτ one has |q| < 1 for τ ∈ H, there
is a holomorphic function j̃ in the punctured unit disk such that j̃(q) = j(τ).
Likewise ∆ may be regarded as function of q, and one may use the calculus
of residues to show that ∆ has a simple zero at q = 0; hence, j̃ has a simple
pole at q = 0, or, equivalently, j has a simple pole at∞ (the “missing top” of
the fundamental domain). Thus, j gives rise to a bicontinuous biholomorphic
isomorphism

H/PSL2(Z) ∪ {∞} −→ P1(C) .

A non-trivial element of PSL2(Z) has a fixed point in H if and only if
it has finite order, and one’s explicit knowledge of the fundamental domain
makes it possible to see that the only elements of finite order are of order 2
or 3§. A congruence subgroup of SL2(Z) is a subgroup Γ that contains one of
the principal congruence subgroups; the principal congruence subgroup Γ(N)
of level N is the set of all elements γ of SL2(Z) that are congruent modN to
the identity matrix. The group Γ0(N) is the congruence subgroup of SL2(Z)
consisting of all elements (

a b
c d

)
for which c ≡ 0 mod N . It is obvious that each congruence group Γ has
finite index in SL2(Z), and, consequently the quotient H/Γ is a non-compact
Riemann surface. Observe that for each level N the group Γ0(N) contains
the parabolic element

T =

(
1 1
0 1

)
,

§Thus, one sees that the primes 2 and 3 play a special role in the study of the group
SL2(Z).
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which gives rise to the holomorphic map τ 7→ τ + 1 that fixes the point ∞.
A modular form5 of weight w for Γ is a holomorphic function f in H that

satisfies the functional equation

f(γ · τ) = (cτ + d)wf(τ), γ ∈ Γ (7)

and that is holomorphic at each cusp of Γ. The role of cusps for Γ is to
provide a slightly larger set H∗ than H,

H∗ = H ∪ {cusps} ,

where Γ acts such that H∗/Γ is a compact Riemann surface containing H/Γ
as the open complement of a finite set of points arising from cusps. The
cusps of Γ are the points of the closure of the boundary of H in P1(C) =
C ∪ {∞} that are fixed by some non-trivial parabolic element of Γ. When
Γ = SL2(Z), the set of cusps is Q ∪ {∞}. In view of (7) applied to the case
γ = T one sees that a modular form f of any weight for the group Γ0(N)
satisfies

f(τ + 1) = f(τ) , (8)

and, therefore, f defines a holomorphic function in the variable q = e2πiτ for
0 < q < 1. The condition in the definition of modular form that f should be
holomorphic at ∞ means that f as a function of q is holomorphic at q = 0.
Consequently, f admits an absolutely convergent Fourier expansion

f(τ) =
∞∑
m=0

cme
2πimτ , (9)

which is a Taylor series in q.
For any cusp ρ of a congruence group Γ one may define the notion holo-

morphic at ρ for a modular form f by an analogous procedure using an
arbitrary parabolic element of Γ that fixes ρ instead of T . For a given con-
gruence group Γ two cusps ρ and σ are equivalent if there is some element
γ in Γ such that σ = γ · ρ. A modular form f is holomorphic at any cusp
that is equivalent to another where it is holomorphic. The modular form f
is a cuspform if, in addition to being holomorphic at each cusp, f vanishes
at each cusp. For a given congruence group Γ a modular form vanishes at

5Details concerning the discussion in this section may be found in Shimura’s book [24].
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any cusp that is equivalent to another where it vanishes. The set of modular
forms of given weight w forms a finite-dimensional vector space over C in
which the set of cuspforms is a linear subspace of codimension bounded by
the number of equivalence classes of cusps. In fact, using “Eisenstein series”
one may show that the codimension of the space of cuspforms in the space of
modular forms is often equal to the number of equivalence classes of cusps.
For example, with the group Γ(1) = SL2(Z) there are no modular forms of
odd weight, there is an Eisenstein series of every even weight greater than
2 that is not a cuspform, and every cusp is equivalent to ∞. Furthermore,
since ∞ is the only zero of the cusp form ∆ (of the preceding section) in the
quotient H∗/Γ(1) and since∞ is a simple zero of ∆, every cuspform for Γ(1)
is divisible by ∆. Thus, in this case, there are no cuspforms of weight less
than 12.

It is not difficult to see that the cuspforms of weight 2 for a congruence
group Γ correspond to holomorphic differential 1-forms (differentials of the
first kind) on the compact Riemann surface X = H∗/Γ . Thus, the dimension
of the space of cuspforms of weight 2 is the genus of X. The fact that there
are no cuspforms of weight 2 for the group Γ(1) matches the previously
mentioned fact that X is P1. It is certain of the cuspforms of weight two for
the groups Γ0(N) that, according to the Shimura-Taniyama-Weil conjecture,
parameterize the isogeny classes of elliptic curves defined over Q.

5 Euler products

It will be recalled that the infinite series

∞∑
n=1

1

ns

converges for Re(s) > 1 and gives rise by analytic continuation to a mero-
morphic function ζ(s) in C. For Re(s) > 1 ζ(s) admits the absolutely
convergent infinite product expansion

∏
p

1

1− p−s
,

taken over the set of primes. This “Euler product” may be regarded as an
analtyic formulation of the principle of unique factorization in the ring Z
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of integers. It is, as well, the product taken over all the non-archimedean
completions of the rational field Q (which completions Qp are indexed by the
set of primes) of the “Mellin transform”6 in Qp

ξp(s) =
1

1− p−s
,

of the canonical “Gaussian density”

Φp(x) =

{
1 if x ∈ closure of Z in Qp

0 otherwise
,

which Gaussian density is equal to its own Fourier transform. For the
archimedean completion Q∞ = R of the rational field Q one forms the clas-
sical Mellin transform

ξ∞(s) = π−(s/2)Γ(s/2)

of the classical Gaussian density

Φ∞(x) = e−πx
2

,

(which also is equal to its own Fourier transform). Then the function

ξ(s) = ξ∞(s)ζ(s) =
∏
p≤∞

ξp(s)

is meromorphic in C, and satisfies the functional equation

ξ(1− s) = ξ(s) . (10)

The connection of Riemann’s ζ-function with the subject of modular
forms begins with the observation that ζ(2s) is essentially the Mellin trans-
form of θI(x) = θ(ix) − 1, where θ, which is a modular form of weight 1/2
and level 8, is defined in the upper-half plane H by the formula

θ(τ) =
∑
m∈Z

exp(πiτm2) .

6The Mellin transform is, more or less, Fourier transform on the multiplicative group.
Classically, the Mellin transform ϕ of f is given formally by ϕ(s) =

∫∞
0
f(x)xs(dx/x).
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In fact, one of the classical proofs of the functional equation (10) is given by
applying the Poisson summation formula7 to the function x 7→ exp(πiτx2),
while observing that the substitution s 7→ (1/2)− s for ζ(2s) corresponds in
the upper-half plane to the substitution τ 7→ −1/τ for the theta series.

If f is a cuspform for a congruence group Γ containing

T =

(
1 1
0 1

)
,

and so, consequently, f(τ + 1) = f(τ), then, as previously explained, one has
the Fourier expansion (9)

f(τ) =
∞∑
m=1

cme
2πimτ .

The Mellin transform ϕ(s) of fI leads to the Dirichlet series

ϕ(s) =
∞∑
m=1

cmm
−s , (11)

which may be seen to have a positive abscissa of convergence. One is led to
the questions:

1. For which cuspforms f does the associated Dirichlet series ϕ(s) admit
an analytic continuation with functional equation?

2. For which cuspforms f does the associated Dirichlet series ϕ(s) have
an Euler product expansion?

For the “modular group” Γ(1) the Dirichlet series associated to every
cuspform of weight w admits an analtyic continution with functional equa-
tion under the substitution s 7→ w − s. Since Γ(1) is generated by the two
matrices T and

W =

(
0 1
−1 0

)
and since the functional equation of a modular form f relative to T is reflected
in the formation of the Fourier series (9), the condition that an absolutely

7On the other hand, (10) may be regarded directly as a divergent model of the Poisson
summation formula.
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convergent series (9) is a modular form for Γ(1) is the functional equation
for a modular form relative solely to W . This is equivalent to the (properly
formulated) functional equation for the associated Dirichlet series ϕ together
with a “growth condition”. For the group Γ0(N), with N > 1, the question
of a functional equation is more complicated since, although T is available,
there is no reason for a cuspform to satisfy a law of transformation relative
to W . But note that for any Γ the set of cuspforms of given weight for which
the associated Dirichlet series have analytic continuations satisfying a given
finite set of functional equations is a vector space. On the other hand, there
is no reason to believe, even for level 1, that the cuspforms admitting an
Euler product expansion form a vector space.

In a nutshell the cuspforms admitting Euler products are those which
arise as eigenforms for an arithmetically defined commutative algebra of semi-
simple operators on the space of cuspforms of a given weight introduced by
E. Hecke. The theory of Hecke operators is reasonably simple for level 1 but
somewhat more complicated in general (see, e.g., Shimura’s book [24]).

Observing that the formula

ds2 =
dx2 + dy2

y2
, for τ = x+ iy ∈ H ,

gives a (the hyperbolic) SL2(R)-invariant metric in H with associated invari-
ant measure

dµ =
dxdy

y2
,

one introduces the Petersson (Hermitian) inner product in the space of cusp-
forms of weight w for Γ with the definition:

〈f, g〉 =
∫
H/Γ

f(τ) g(τ) Im(τ)w dµ(τ) . (12)

(Integration over the quotient H/Γ makes sense since the integrand

f(τ) g(τ) yw

is Γ-invariant.)
For the modular group Γ(1) the nth Hecke operator T (n) = Tw(n) is the

linear endomorphism of the space of cuspforms of weight w arising from
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the following considerations. Let Sn be the set of 2×2 matrices in Z with
determinant n. For

M =

(
a b
c d

)
∈ Sn

and for a function f in H one defines

(M ·w f)(τ) = det(M)w−1(cτ + d)−wf(τ) , (13)

and then, observing that Γ(1) under ·w acts trivially on the modular forms
of weight w, one may define the Hecke operator Tw(n) by

Tw(n) =
∑

M∈Sn/Γ(1)

(M ·w f)(τ) , (14)

where the quotient Sn/Γ(1) refers to the action of Γ(1) by left multiplication
on the set Sn. One finds for m, n coprime that

T (mn) = T (m)T (n) ,

and furthermore one has

T (pe+1) = T (pe)T (p)− pw−1T (pe−1) .

Consequently, the operators T (n) commute with each other, and, therefore,
generate a commutative algebra of endomorphisms of the space of cusp forms
of weight w for Γ(1). It is not difficult to see that the Hecke operators are
self-adjoint for the Petersson inner product on the space of cuspforms. Con-
sequently, the space of cuspforms of weight w admits a basis of simultaneous
eigenforms for the Hecke algebra. A “Hecke eigencuspform” is said to be
normalized if its Fourier coefficient c1 = 1. If f is a normalized Hecke eigen-
cuspform, then

• The Fourier coefficient cm of f is the eigenvalue of f for T (m).

• The Fourier coefficients c(m) = cm of f satisfy

c(mn) = c(m)c(n) for m,n coprime, and

c(pe+1) = c(pe)c(p)− pw−1c(pe−1) for p prime.
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Consequently, the Dirichlet series associated with a simultaneous Hecke eigen-
cuspform of level 1 and weight w admits an Euler product

ϕ(s) =
∏
p

1

1− cpp−s + pw−1−2s
. (15)

For example, when f is the unique normalized cuspform ∆ of level 1 and
weight 12, one has

ϕ(s) =
∏
p

1

1− τ(p)p−s + p11−2s
,

where cp = τ(p) is the function τ of Ramanujan.
For the congruence group Γ0(N) a Hecke eigencuspform of weight w gives

rise to a Dirichlet series ϕ(s) that admits an Euler product expansion whose
factors at primes p coprime to N resemble those given by (15). In order for
ϕ(s) to satisfy a functional equation under the substitution s 7→ w − s, one
needs to require that the eigencuspform f admits a functional equation not
only with respect to each element of the group Γ0(N) but also with respect
to the substitution in the upper-half plane H given by the matrix

WN =

(
0 −1
N 0

)
.

A. Weil ([31]) showed that the cuspforms of weight 2 for the group Γ0(N)
satisfying the appropriate functional equation under the mapping of H given
by WN correspond precisely to Dirichlet series with certain growth conditions
that admit analytic continuations as meromorphic functions in C satisfying
a finite number of “twisted” functional equations.

The reader will have noticed that it is not extremely easy to character-
ize the cuspforms of weight 2 that conjecturally (Shimura-Taniyama-Weil)
parameterize the isogeny classes of elliptic curves defined over the rational
field Q. The Euler product is an extremely important part of the character-
ization since the Dirichlet series given by such an elliptic curve, as will be
made explicit in the next section, is, by its very nature, an Euler product.
Weil conjectures explicitly that the Dirichlet series with Euler product given
by each elliptic curve defined over Q satisfies these conditions, i.e., is the
Dirichlet series associated to some WN -compatible Hecke eigencuspform for
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the group Γ0(N), where N is the “conductor” of E. This has led to efforts,
related to the “Langlands program” to understand the WN -compatible Hecke
eigencuspforms in a more intrinsic way as objects of representation theory
over Q (see, e.g., the survey of Gelbart [4]).

6 Elliptic curves over the rational field Q

Let E be an elliptic curve defined over Q. One may clear denominators from
its cubic equation, if necessary, in order to arrive at an equation with integer
coefficients having no common factor. While the Weierstrass normal form
(3) is available to represent the isomorphism class of any elliptic curve over
a field of characteristic different from 2 and 3, one needs the generalized
Weierstrass form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (16)

over an arbitrary field, and, moreover, for each elliptic curve E defined over
Q there is a “best possible” equation (e.g., see Silverman [27]) of the form
(16) with integer coefficients called the Neron model of E. With an abuse of
notation E will denote the Neron model, which may be regarded as a “curve
over Z”. (One would want to call it an “elliptic curve over Z” if it were
“smooth over Z”, i.e., if it had good reduction at each prime p; the fact that
every Neron model has bad reduction at least once corresponds under the
“dictionary” to the fact that there are no cuspforms of weight two and level
1.) It then may be observed that for each prime p the Neron model gives
rise to a cubic equation over the finite field Fp. For all but a finite number
of p the equation over Fp is non-singular over Fp, i.e., determines an elliptic
curve Ep defined over Fp. One says in this case that E has “good reduction”
mod p. Following Tate ([30]) one introduces

b2 = a2
1 + 4a2 ,

b4 = a1a3 + 2a4 ,

b6 = a2
3 + 4a6 , and

b8 = b2a6 − a1a3a4 + a2a
2
3 − a2

4 .

Then one has
∆ = −b2

2b8 − 8b3
4 − 27b2

6 + 9b2b4b6 .
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The non-vanishing of ∆ mod p is necessary and sufficient for E to have good
reduction mod p. It follows that a prime p divides ∆ if and only if E does not
have good reduction mod p. If p is a prime for which E has “bad reduction”,
then there is a single singular point of the reduced curve Ep, and either (a)
Ep has distinct tangent lines at the singular point (semi-stable reduction) or
(b) Ep has a single tangent line occurring with multiplicity 2. E is called
semi-stable if it has either good or semi-stable reduction at each prime. The
conductor of E is the integer N defined by

N =
∏
p

pνp ,

where

νp =


0 if E has good reduction at p .
1 if E has semi-stable reduction at p .
2 + λp ≥ 2 otherwise.

The non-negative integer λp cannot be positive unless p is 2 or 3. Tautolog-
ically, E is semi-stable if and only if its conductor N is square-free.

One defines the “L-series” of E by

L(E, s) =
∏
p|N

1

1− cpp−s
∏
p6 |N

1

1− cpp−s + p1−2s
, (17)

where cp is defined when E has good reduction mod p by the formula

cp = p+ 1− |E(Fp)| ,

and cp is defined when E has bad reduction mod p by

cp =


1 if νp = 1 and the tangents are defined over Fp .
−1 if νp = 1 with “irrational” tangents .
0 if νp > 1 .

One observes readily that the L-function of E codifies information about the
number of points of E in the finite field Fp. Quite generally for an algebraic
variety defined over Q the analogous codification of information obtained
by counting points in the various reductions mod p of the variety yields
the “Hasse-Weil zeta function”, which reflects “cohomological” information

17



about E. The L-series of E is the essential part, corresponding to cohomology
in dimension 1, of the Hasse-Weil zeta function of E. The Hasse-Weil zeta
function is a special case of the general notion (Serre [19]) of “zeta function”
for a scheme of finite type over Z.

One observes that L(E, s) resembles, at least insofar as one considers its
Euler factors for primes p corresponding to good reductions of E, the Dirich-
let series associated to a cuspform of weight 2 that admits an Euler product
expansion. The observation of this resemblance is the beginning of an appre-
ciation of the Shimura-Taniyama-Weil conjecture. One is led to ask to what
extent the two classes of Dirichlet series with Euler products coincide. The
conjecture states that the L-function of an elliptic curve defined over Q with
conductor N arises from a cuspform for the group Γ0(N) that is compatible
with the substitution in the upper-half plane H given by WN . Isogenous
elliptic curves have the same L-function, and, conversely (cf. Tate [29] and
Faltings [3]) two elliptic curves with the same L-function must be isogenous.
Thus, the idea of the conjecture is that the isogeny classes of elliptic curves
defined over Q with conductor N are in bijective correspondence with the set
of Hecke eigencuspforms for the group Γ0(N) of level N , compatible with the
extension of that group by the substitution arising from WN , having rational
Fourier coefficients and not arising from levels dividing N .

7 The Shimura map

Shimura ([23], [24], [25]) showed for a given WN -compatible Hecke eigen-
cuspform f of weight 2 for the group Γ0(N) with rational Fourier coefficients
how to construct how to construct an elliptic curve Ef defined over Q such
that the Dirichlet series ϕ(s) associated with f is the same as the L-function
L(Ef , s). Thus, the Shimura-Taniyama-Weil conjecture becomes the state-
ment that Shimura’s map from the set of such cuspforms to the set of elliptic
curves defined over Q is surjective up to isogeny. A rough description of the
Shimura map follows.

Let Γ be a congruence subgroup of SL2(Z), and let X(Γ) denote the com-
pact Riemann surface H∗/Γ. The inclusion of Γ in Γ(1) induces a “branched
covering”

X(Γ) −→ X(1) ∼= P1 .

One may use the elementary Riemann-Hurwitz formula from combinatorial
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topology to determine the Euler number, and consequently the genus, of
X(Γ). The genus is the dimension of the space of cuspforms of weight 2.
Even when the genus is zero one obtains embeddings of X(Γ) in projective
spaces Pr through holomorphic maps

τ 7−→ (f0(τ), f1(τ), . . . , fr(τ)) ,

where f0, f1, . . . , fr is a basis of the space of modular forms of weight w with
w sufficiently large. For example, any w ≥ 12 will suffice for Γ(1). For Γ0(N)
(but not for arbitrary Γ) one may find a basis of the space of modular forms
of weight w having rational Fourier coefficients. Using the corresponding
projective embedding one finds a model for X0(N) = X(Γ0(N)) over Q, i.e.,
an algebraic curve defined over Q in projective space that is isomorphic as a
compact Riemann surface to X0(N).

Associated with any “complete non-singular” algebraic curve (i.e., after
Weyl [33], any compact Riemann surface) X of genus g is a complex torus,
the “Jacobian” J(X) of X, that is the quotient of g-dimensional complex
vector space Cg by the lattice Ω generated by the “period matrix”, which is
the g×2g matrix in C obtained by integrating each of the g members ωi of a
basis of the space of holomorphic differentials over each of the 2g loops in X
representing the members of a homology basis in dimension 1. Furthermore,
if one picks a base point z0 in X, then for any z in X, the path integral from
z0 to z of each of the g holomorphic differentials is well-defined modulo the
periods of the differential. One obtains a holomorphic map X → J(X) from
the formula

z 7−→ (
∫ z

z0
ω1, . . . ,

∫ z

z0
ωg) mod Ω .

This map is, in fact, universal for pointed holomorphic maps from X to
complex tori. Furthermore, the Jacobian J(X) is an algebraic variety that
admits definition over any field of definition for X and z0, and the universal
map also admits definition over any such field. The complex tori that admit
embeddings in projective space are the abelian group objects in the cate-
gory of projective varieties. They are called abelian varieties. Every abelian
variety is isogenous to the product of “simple” abelian varieties: abelian va-
rieties having no abelian subvarieties. Shimura showed that one of the simple
isogeny factors of J(X0(N)) is an elliptic curve Ef defined over Q character-
ized by the fact that its one-dimensional space of holomorphic differentials
induces on X0(N) via the composition of the universal map with projection
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on Ef the one-dimensional space of differentials on X0(N) determined by the
cuspform f . He showed further that L(Ef , s) is the Dirichlet series ϕ(s) with
Euler product given by f . An elliptic curve E defined over Q is said to be
modular if it is isogenous to Ef for some WN -compatible Hecke eigencusp-
form of weight 2 for Γ0(N). Equivalently E is modular if and only if L(E, s)
is the Dirichlet series given by such a cuspform. The Shimura-Taniyama-
Weil Conjecture states that every elliptic curve defined over Q is modular.
Shimura [23] showed that this conjecture is true in the special case where the
Z-module rank of the ring of endomorphisms of E is greater than one. In this
case the point τ (notation of section 3) of the upper-half plane corresponding
to E(C) is a quadratic imaginary number, and L(E, s) is a number-theoretic
L-function associated with the corresponding imaginary quadratic number
field.

8 The hypothetical Frey curve

Let p ≥ 5 be a prime. Based on the assumption, which presumably is false,
that there are non-zero integers a, b, c such that ap + bp + cp = 0, G. Frey
observed that the elliptic curve given by the equation

y2 = x(x− ap)(x+ bp) , (18)

which is certainly defined over Q, would not be likely to be modular. Thus,
if the Shimura-Taniyama-Weil Conjecture were true, then “Fermat’s Last
Theorem” would also be true. By 1987 it had been shown through the efforts
of Frey, Ribet and Serre that the Frey curve (18) is not modular. The proof
involves the systematic study of what is known as the “`-adic representation
of an elliptic curve defined over Q, which is described in the next section.
This same technique is what has been reported to be the basis of the proof
of Wiles that every semi-stable elliptic curve defined over Q is modular. The
Frey curve (18) has discriminant ∆ = (abc)p. It is only slightly difficult to
see that it is semi-stable, and, therefore, that its conductor N is the square-
free integer abc. If the Frey curve is modular, one is led to a cuspform of
weight 2 for Γ0(abc). The theory of `-adic representations leads one along a
path of reductions of the level N from the initial level abc that enables one
to conclude that there is a cuspform of weight 2 for Γ0(2); but the genus of
X0(2) is 0, and, consequently, there is no such cuspform.
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9 `-adic representations of Gal(Q̄/Q)

Let E be an elliptic curve defined over Q. Inasmuch as the group law
E × E → E is defined over Q it follows that for each integer m the group
(scheme) E[m] of m-torsion points, i.e., for any field K containing Q the
group E[m](K) consisting of all x in E(K) such that mx = 0, is defined by
equations with rational coefficients. Consequently, any automorphism of K
must carry the group E[m](K) into itself. Since E(C) is the quotient of C
by a lattice, it is clear that E[m](C) is isomorphic to Z/mZ× Z/mZ; in fact,
this latter group is isomorphic to E[m](K) for each algebraically closed field
of characteristic 0. There is a unique ring homomorphism Z/mnZ→ Z/mZ
for each integer n ≥ 1, and the family of these ring homomorphisms gives rise
to an inverse system in the category of commutative rings. If one specializes
to the case m = `r, where ` is prime, the projective limit is the ring Z` of
`-adic integers. The groups E[m] form a direct system with respect to the
inclusions E[m] ⊆ E[mn], but, corresponding to the inverse system of the
groups Z/mZ, form an inverse system (the Tate system) with respect to the
family of homorphisms E[mn]→ E[m] defined by x 7→ nx. If one specializes
to the case m = `r, where ` is prime, one obtains the projective limit

T`(E) = proj limr→∞E[`r](Q̄) ∼= Z` × Z` , (19)

which is isomorphic to the cohomology module

H1(E,Z`) .

The action of Gal(Q̄/Q) on the torsion groups E[m] induces an action of
Gal(Q̄/Q) on the projective limit T`(E). This action gives rise to a represen-
tation

ρ` : Gal(Q̄/Q) −→ GL2(Z`) ,

which is called the `-adic representation of E. In considering ρ` one is re-
minded of the action of the automorphism group of a manifold M on the
cohomology H∗(M) and, more particularly, the action of Gal(C/R) on the
cohomology of M when M is an algebraic manifold in Pn(C) defined by
equations with real coefficients, but one must keep in mind that the trans-
formations of E(Q̄) arising from the elements of Gal(Q̄/Q) are not even
remotely continuous in the classical topology on E(C). More generally, there
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is an algebraic way of defining the cohomology ring H∗(M,Z`) (see Tate [28])
when M is an algebraic variety with the property that automorphisms fixing
the field of definition act on H∗(M,Z`). An introduction to the study of ρ`
may be found in Serre’s “Montreal Notes” [21].

The canonical ring homomorphism from the ring Z` of `-adic integers
to the field Z/`Z induces a group homomorphism A 7→ A , called reduc-
tion mod `, from the group GL2(Z`) to the finite group GL2(Z/`Z). An
`-adic representation ρ of Gal(Q̄/Q) is called modular if it is isomorphic to
the representation ρ` arising from the elliptic curve Ef that is the image
under the Shimura map of a modular form f . A representation

Gal(Q̄/Q)→ GL2(Z/`Z)

is called modular if it is isomorphic to ρ` for some modular `-adic representation
ρ`. In the extensive detailed study of representations of Gal(Q̄/Q) particular
attention has been paid to the question of when a representation in GL2(Z`)
is modular and also to the question of when a representation of GL2(Z/`Z)
is modular. Under certain conditions (see Serre [22] and Ribet [14], [15]) one
can show that ρ` is modular if ρ` is modular, i.e., ρ` is modular if it is congru-
ent mod ` to a modular `-adic representation. Such arguments are central
both to the work of Ribet in showing that the Shimura-Taniyama-Weil con-
jecture implies “Fermat’s Last Theorem” and to the reported work of Wiles
in proving that semi-stable elliptic curves are modular. In the work of Ribet
the basic idea is that the modularity of the Frey curve, which has square-free
conductor N = abc, implies the existence of a cusp form of weight 2 and
level N . By using an argument at the scene of the mod ` representations,
Ribet shows that one may split each odd prime divisor out of the level N
and arrive at the conclusion that there is a cusp form of weight 2 and level
2, which is not possible.
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APPENDIX: Current Status

Andrew Wiles posted the following announcement in the “UseNet” elec-
tronic news group called “sci.math”:

From: wiles@rugola.Princeton.EDU (Andrew Wiles)

Newsgroups: sci.math

Subject: Fermat status

Message-ID: <1993Dec4.013650.12700@Princeton.EDU>

Date: 4 Dec 93 01:36:50 GMT

Sender: news@Princeton.EDU (USENET News System)

Organization: Princeton University

Lines: 21

Originator: news@nimaster

Nntp-Posting-Host: rugola.princeton.edu

In view of the speculation on the status of my work on the

Taniyama-Shimura conjecture and Fermat’s Last Theorem I will give a

brief account of the situation. During the review process a number of

problems emerged, most of which have been resolved, but one in

particular I have not yet settled. The key reduction of (most cases

of ) the Taniyama-Shimura conjecture to the calculation of the Selmer

group is correct. However the final calculation of a precise upper

bound for the Selmer group in the semistable case (of the symmetric

square representation associated to a modular form) is not yet

complete as it stands. I believe that I will be able to finish this

in the near future using the ideas explained in my Cambridge

lectures.

The fact that a lot of work remains to be done on the

manuscript makes it still unsuitable for release as a preprint . In

my course in Princeton beginning in February I will give a full

account of this work.

Andrew Wiles.
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orem”, Annales de la Faculté des Sciences de Toulouse, vol. 11 (1990),
pp.116-139.

[16] , “Wiles proves Taniyama’s conjecture; Fermat’s Last Theorem
follows”, Notices of the American Mathematical Society, vol. 40 (1993),
pp. 575-576.

[17] K. Ribet, ed., Current Trends in Arithmetical Algebraic Geometry,
Contemporary Mathematics, vol. 67, American Mathematical Society,
1987.

[18] K. Rubin & A. Silverberg, “Wiles’ proof of Fermat’s Last Theorem”,
preprint, November, 1993.

[19] J.-P. Serre, “Zeta and L functions”, Arithmetical Algebraic Geometry:
Proceedings of a Conference Held at Purdue University, December 5-7,
1963, Harper & Row, Publishers, 1965.

[20] J.-P. Serre, A Course in Arithmetic, Graduate Texts in Mathematics,
vol. 7, Springer-Verlag, 1973.

[21] , Abelian l-adic Representations and Elliptic Curves, W. A. Ben-
jamin, Inc., 1968.

[22] , “Sur les représentations modulaires de degré 2 de Gal(Q̄/Q)”,
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[31] A. Weil, “Über die Bestimmung Dirichletscher Reihen durch Funktion-
algleichungen”, Mathematische Annalen, vol. 168 (1967), pp. 149-56.

[32] , Dirichlet Series and Automorphic Forms, Lecture Notes in
Mathematics, no. 189, Springer-Verlag, 1971.

[33] Hermann Weyl, The Concept of a Riemann Surface, (English transla-
tion by Gerald R. MacLane), Addison-Wesley, 1964.

26


