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1 Introduction

In the following ` will denote a prime greater than 2, and F`
∼= Z/`Z the field of integers

modulo `. We will be talking about “addition”, as previously studied, on a cubic curve E given
in Weierstrass form, i.e., y2 + a1xy + a3y = x3 + a2x

2 + a4x + a6, with coefficients in F`, and
points (x, y) of E will be pairs of elements x, y in F`. A reference for this material is the book
A Course in Number Theory and Cryptography by Neal Koblitz, published in 1987 by Springer.
Some information may also be found online; for example, one might look at Wikipedia1.

The basic idea is to use the El Gamal method — which makes sense for a (large) finite cyclic
group. The case where the finite cyclic group is the multiplicative group (Z/pZ)∗ for some odd
prime p was discussed previously in the course. Here the task is to use the method with a cyclic
subgroup of the points on an elliptic curve over Fl, when l is an odd prime.

2 Representing characters by points on a curve

As before, characters are represented by numbers; in particular, characters and standard sym-
bols in U.S. English may be represented by their ASCII codes, which are integers from 0 to
127. The question here is how to represent a number N in this range by a point of E. In the
first place l must be large enough that E contains at least 127 points. Since for a point (x, y)
of E the second coordinate y is the root of a quadratic polynomial in the first coordinate x,
letting x be N and then solving for y will not lead to a root y in F` unless the discriminant
of the corresponding quadratic equation is the square of an element of F`. Precisely half of
the non-zero elements of F` are squares, so the discriminant will be a square roughly half the
time. Because of that x cannot simply be N but rather something determined by N that offers
a range of possible values of x.

One chooses an integer m so that 1/2m is an acceptably small probability of failure to find a
y for given x. The idea then is, for a given value N , to try as many as m different values of x
until there is found a y with (x, y) on E. The values of x one tries are

x = mN + j , 1 ≤ j ≤ m .

The event that one does not find a y after trying all m of these values has probability 1/2m. If
a y is found, then the point p = (x, y) becomes the point of the curve representing the number
N . There is no secrecy in this. The original number N may be recovered from p as the largest
integer strictly smaller than x/m or

N = floor
(

lift(x)− 1
m

)
1URI: http://en.wikipedia.org/wiki/Elliptic curve cryptography



where the function lift returns the least non-negative residue of an integermod. It is necessary
that ` ≥ 128m if this method is to be viable for representing integers 0 ≤ N ≤ 127 by a point
on a given curve E over Fl.

3 Encoding points on a curve

Inasmuch as the basic El Gamal technique needs a cyclic group, in order to be sure that the
points on an elliptic curve obtained by the method of the previous section to represent codes
all lie in a cyclic subgroup of E(Fl), it is almost necessary to choose l and E so that the entire
group E(Fl) is cyclic. This is, in particular, the case if the size of E(Fl) is square-free.

Here the question is encoding for secrecy of the points on a curve. Suppose that b is a point,
regarded as the “base”, of large order relative to the arithmetic on E. This applies, in particular,
when the group of points of E in Fl is cyclic and b is a generator. For example, if the number
of all points |E| of E happens to be prime, which is far from always true, then any point b of
E other than the origin has order |E|. As suggested above, for any E the number |E| of its
points is usually somewhere around ` since there are two points on E for each of the roughly
`/2 values of x for which there is a y except for the case when x leads to a quadratic equation
for y having discriminant 0. In this scheme a single point p on E will be encrypted by a pair
(q, r) where both q and r are points of E.

The designer of the scheme picks the prime `, the curve E, a “base point” b on E of large order,
all of which are to be public, and a secret element j of F`. With those items fixed, the designer
publishes one more point c on E that is determined by the formula c = jb. For given ` and E,
the scheme’s “public key” is the pair of points b and c on E.

A user of this scheme may encode a point p of E as follows: (i) draw a random value k modulo
the order of b and then (ii) produce the pair of points (q, r) using the formulae:

q = kb

r = p + kc

Anyone who knows the secret value j as well as the published data may recover the original
point p from the pair (q, r) using the simple formula

p = r − jq .

Security for this system relies on it being difficult to ascertain j even though b and c are both
known.
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