El Gamal Cryptography on an Elliptic Curve

Revised: April 28, 2009

1 Introduction

In the following ℓ will denote a prime greater than 2, and $\mathbf{F}_{\ell} \cong \mathbf{Z}/\ell\mathbf{Z}$ the field of integers modulo ℓ . We will be talking about "addition", as previously studied, on a cubic curve E given in Weierstrass form, i.e., $y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$, with coefficients in \mathbf{F}_{ℓ} , and points (x, y) of E will be pairs of elements x, y in \mathbf{F}_{ℓ} . A reference for this material is the book A Course in Number Theory and Cryptography by Neal Koblitz, published in 1987 by Springer. Some information may also be found online; for example, one might look at Wikipedia¹.

The basic idea is to use the El Gamal method — which makes sense for a (large) finite cyclic group. The case where the finite cyclic group is the multiplicative group $(\mathbf{Z}/p\mathbf{Z})^*$ for some odd prime p was discussed previously in the course. Here the task is to use the method with a cyclic subgroup of the points on an elliptic curve over \mathbf{F}_l , when l is an odd prime.

2 Representing characters by points on a curve

As before, characters are represented by numbers; in particular, characters and standard symbols in U.S. English may be represented by their ASCII codes, which are integers from 0 to 127. The question here is how to represent a number N in this range by a point of E. In the first place l must be large enough that E contains at least 127 points. Since for a point (x, y) of E the second coordinate y is the root of a quadratic polynomial in the first coordinate x, letting x be N and then solving for y will not lead to a root y in \mathbf{F}_{ℓ} unless the discriminant of the corresponding quadratic equation is the square of an element of \mathbf{F}_{ℓ} . Precisely half of the non-zero elements of \mathbf{F}_{ℓ} are squares, so the discriminant will be a square roughly half the time. Because of that x cannot simply be N but rather something determined by N that offers a range of possible values of x.

One chooses an integer m so that $1/2^m$ is an acceptably small probability of failure to find a y for given x. The idea then is, for a given value N, to try as many as m different values of x until there is found a y with (x, y) on E. The values of x one tries are

$$x = mN + j, \quad 1 \le j \le m$$

The event that one does not find a y after trying all m of these values has probability $1/2^m$. If a y is found, then the point p = (x, y) becomes the point of the curve representing the number N. There is no secrecy in this. The original number N may be recovered from p as the largest integer strictly smaller than x/m or

$$N = \operatorname{floor}\left(\frac{\operatorname{lift}(x) - 1}{m}\right)$$

¹URI: http://en.wikipedia.org/wiki/Elliptic_curve_cryptography

where the function lift returns the least non-negative residue of an integer mod. It is necessary that $\ell \geq 128m$ if this method is to be viable for representing integers $0 \leq N \leq 127$ by a point on a given curve E over \mathbf{F}_l .

3 Encoding points on a curve

Inasmuch as the basic El Gamal technique needs a cyclic group, in order to be sure that the points on an elliptic curve obtained by the method of the previous section to represent codes all lie in a cyclic subgroup of $E(\mathbf{F}_l)$, it is almost necessary to choose l and E so that the entire group $E(\mathbf{F}_l)$ is cyclic. This is, in particular, the case if the size of $E(\mathbf{F}_l)$ is square-free.

Here the question is encoding for secrecy of the points on a curve. Suppose that b is a point, regarded as the "base", of large order relative to the arithmetic on E. This applies, in particular, when the group of points of E in \mathbf{F}_l is cyclic and b is a generator. For example, if the number of all points |E| of E happens to be prime, which is far from always true, then any point b of E other than the origin has order |E|. As suggested above, for any E the number |E| of its points is usually somewhere around ℓ since there are two points on E for each of the roughly $\ell/2$ values of x for which there is a y except for the case when x leads to a quadratic equation for y having discriminant 0. In this scheme a single point p on E will be encrypted by a pair (q, r) where both q and r are points of E.

The designer of the scheme picks the prime ℓ , the curve E, a "base point" b on E of large order, all of which are to be public, and a secret element j of \mathbf{F}_{ℓ} . With those items fixed, the designer publishes one more point c on E that is determined by the formula c = jb. For given ℓ and E, the scheme's "public key" is the pair of points b and c on E.

A user of this scheme may encode a point p of E as follows: (i) draw a random value k modulo the order of b and then (ii) produce the pair of points (q, r) using the formulae:

$$q = kb$$
$$r = p + kc$$

Anyone who knows the secret value j as well as the published data may recover the original point p from the pair (q, r) using the simple formula

$$p = r - jq \quad .$$

Security for this system relies on it being difficult to ascertain j even though b and c are both known.