Modern Computing for Mathematicians (Math 587)

 A generalization of the Syracuse iterator

 A generalization of the Syracuse iterator}

February 24, 2009

Recall that the Syracuse function s is defined for integers n by

$$
s(n)=\left\{\begin{aligned}
1 & \text { if } n \leq 1 \\
3 n+1 & \text { if } n>1 \text { is odd } \\
n / 2 & \text { if } n>1 \text { is even }
\end{aligned}\right.
$$

Many questions about the iterative behavior of s - in particular, the question of whether the value of some iterate from any starting point is 1 - are unaffected if s is replaced with the function s_{1} defined as follows:

$$
s_{1}(n)=\left\{\begin{aligned}
1 & \text { if } n \leq 1 \\
3 n+1 & \text { if } n>1 \text { is odd } \\
n / 2^{k} & \text { if } n=2^{k} m \text { where } m \text { is odd and } k \geq 1
\end{aligned}\right.
$$

or, as one might more informally write, for $n \geq 1$,

$$
s_{1}(n)=3 n+1 \text { made coprime to } 2
$$

Generalizing this, for given pairwise coprime integers $a, b, m>0$ with $m \geq 2$, one defines for $n \geq 1$

$$
f_{<a, b, m>}(n)=a n+b \text { made coprime to } m .
$$

Here, for an integer x, the phrase " x made coprime to m " means that for any common prime divisor p of x and m the highest power of p dividing x is removed as a factor. Note that the meaning of $f_{\langle a, b, m\rangle}$ is not changed when m is replaced by the product of the distinct primes dividing m; that is, without loss of generality one may restrict to the case where m is square-free.
Example: $s_{1}=f_{<3,1,2>}$.

Exercises:

1. Write code for gp to investigate the iterates of $f_{<a, b, m>}$ from a given integer. In particular, the code should be able to determine whether from a given starting integer n a cycle is formed within the first N iterates.
2. Determine what cycles, if any, are formed and whether there seems to be a pattern of unbounded growth in the iterates for $n, N \leq 10000$ in the following cases:
(a) $f_{<3,2,5>}$.
(b) $f_{\langle 5,1,3>}$.
(c) $f_{<17,1,30030>}$.
