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Let R denote a given principal ideal domain.

Definition. Two m × n matrices A,B in R will be called equivalent if there exist matrices U ∈ GLm(R) and
V ∈ GLn(R) such B = UAV . To indicate that A and B are equivalent one may write A ∼ B.

Observe that the ideal in R generated by the entries of A and the ideal generated by the entries of B are the same
when A and B are equivalent. Since R is a principal ideal domain, it follows that the entries of A and the entries of
B share the same greatest common divisors inasmuch as these greatest common divisors serve as single generators
for these ideals.

By rank of a matrix A in R one understands the rank of A when it is regarded as a matrix in the fraction field of R.

Lemma 1. If a and b are non-zero entries sharing either a row or a column in an m×n matrix over R, then there
is an equivalent matrix having a greatest common divisor of a and b as entries.

Proof. The case where they share a row is the transpose of the case where they share a column. If they share a
column one may narrow the scope to that column and the two rows that are involved, i.e., it is essentially a question
about the case m = 2, n = 1. If Ra+Rb = Rd, then one may choose e, f ∈ R such that ea+fb = d. If a′ = a/d
and b′ = b/d, then (

e f
− b′ a′

) (
a
b

)
=

(
d
0

)
.

Theorem 1. Every m× n matrix in R of rank r is equivalent to a matrix C for which Cii = ci for 1 ≤ i ≤ r and
Cij = 0 for all other pairs (i, j) where the non-zero entries ci are successively divisible, i.e., ci|ci+1 for 1 ≤ i ≤ r−1.

Proof. Let k = max(m,n). Use induction on k. The result is trivially true if k = 1 or if the given matrix A = 0.
Assume k > 1. Among the non-zero entries in all of the matrices equivalent to A there is an entry in one of those
matrices having the minimum number of prime factors occuring among those entries. Let m be an entry having the
said minimum number of prime factors, and replace A, if necessary, by an equivalent matrix in which m is an entry.
Since any entry may be moved to position (1, 1) using row and column operations, replacing A again, if necessary, by
an equivalent matrix, one may assume that m is the (1, 1) entry of A. By the lemma, in view of the choice of m, m
must divide all entries in the first row and the first column of A. For each entry in the first column of A other than
the m in position (1, 1), performing an elementary row operation on A, hence replacing A by an equivalent matrix,
will zero that entry. Likewise elementary column operations will zero entries in the first row of A beyond the (1, 1)
position. Thus, one may assume that the m in position (1, 1) is the only non-zero entry in either the first row or
the first column of A. By the inductive hypothesis the (m − 1) × (n − 1) matrix A1 formed by deleting the first
row and the first column of A satisfies U1A1V1 = C1 where the only non-zero entries in C1 are successively divisible
elements c2, . . . , cr in positions (1, 1), . . . (r − 1, r − 1) of C1. Taking

U =
(

1 0
0 U1

)
and V =

(
1 0
0 V1

)
one obtains

UAV = C

with the only non-zero entries being C11 = m, C22 = c2, . . . , Crr = cr. There is still, however, the question of
whether m divides c2. Let d be a greatest common divisor of m and c2, and let em + fc2 = d. Replacing the first
row of C with the sum of itself and the second row multiplied by f and then replacing the second column of that by
the sum of itself and the first column multiplied by e yields a matrix equivalent to C, hence equivalent to A, having
the entry d = em + fc2. Since d divides m but, in view of the choice of m, has no fewer prime factors than m, one
sees that m is the product of a unit in R with d. Therefore, m divides c2 since d divides c2.


