Equivalence of Matrices in a Principal Ideal Domain

Math 520B Handout: November 11, 2005

Let R denote a given principal ideal domain.
Definition. Two $m \times n$ matrices A, B in R will be called equivalent if there exist matrices $U \in \operatorname{GL}_{m}(R)$ and $V \in \mathrm{GL}_{n}(R)$ such $B=U A V$. To indicate that A and B are equivalent one may write $A \sim B$.

Observe that the ideal in R generated by the entries of A and the ideal generated by the entries of B are the same when A and B are equivalent. Since R is a principal ideal domain, it follows that the entries of A and the entries of B share the same greatest common divisors inasmuch as these greatest common divisors serve as single generators for these ideals.

By rank of a matrix A in R one understands the rank of A when it is regarded as a matrix in the fraction field of R.

Lemma 1. If a and b are non-zero entries sharing either a row or a column in an $m \times n$ matrix over R, then there is an equivalent matrix having a greatest common divisor of a and b as entries.

Proof. The case where they share a row is the transpose of the case where they share a column. If they share a column one may narrow the scope to that column and the two rows that are involved, i.e., it is essentially a question about the case $m=2, n=1$. If $R a+R b=R d$, then one may choose $e, f \in R$ such that $e a+f b=d$. If $a^{\prime}=a / d$ and $b^{\prime}=b / d$, then

$$
\left(\begin{array}{cc}
e & f \\
-b^{\prime} & a^{\prime}
\end{array}\right)\binom{a}{b}=\binom{d}{0}
$$

Theorem 1. Every $m \times n$ matrix in R of rank r is equivalent to a matrix C for which $C_{i i}=c_{i}$ for $1 \leq i \leq r$ and $C_{i j}=0$ for all other pairs (i, j) where the non-zero entries c_{i} are successively divisible, i.e., $c_{i} \mid c_{i+1}$ for $1 \leq i \leq r-1$.

Proof. Let $k=\max (m, n)$. Use induction on k. The result is trivially true if $k=1$ or if the given matrix $A=0$. Assume $k>1$. Among the non-zero entries in all of the matrices equivalent to A there is an entry in one of those matrices having the minimum number of prime factors occuring among those entries. Let m be an entry having the said minimum number of prime factors, and replace A, if necessary, by an equivalent matrix in which m is an entry. Since any entry may be moved to position $(1,1)$ using row and column operations, replacing A again, if necessary, by an equivalent matrix, one may assume that m is the $(1,1)$ entry of A. By the lemma, in view of the choice of m, m must divide all entries in the first row and the first column of A. For each entry in the first column of A other than the m in position $(1,1)$, performing an elementary row operation on A, hence replacing A by an equivalent matrix, will zero that entry. Likewise elementary column operations will zero entries in the first row of A beyond the $(1,1)$ position. Thus, one may assume that the m in position $(1,1)$ is the only non-zero entry in either the first row or the first column of A. By the inductive hypothesis the $(m-1) \times(n-1)$ matrix A_{1} formed by deleting the first row and the first column of A satisfies $U_{1} A_{1} V_{1}=C_{1}$ where the only non-zero entries in C_{1} are successively divisible elements c_{2}, \ldots, c_{r} in positions $(1,1), \ldots(r-1, r-1)$ of C_{1}. Taking

$$
U=\left(\begin{array}{cc}
1 & 0 \\
0 & U_{1}
\end{array}\right) \quad \text { and } \quad V=\left(\begin{array}{cc}
1 & 0 \\
0 & V_{1}
\end{array}\right)
$$

one obtains

$$
U A V=C
$$

with the only non-zero entries being $C_{11}=m, C_{22}=c_{2}, \ldots, C_{r r}=c_{r}$. There is still, however, the question of whether m divides c_{2}. Let d be a greatest common divisor of m and c_{2}, and let $e m+f c_{2}=d$. Replacing the first row of C with the sum of itself and the second row multiplied by f and then replacing the second column of that by the sum of itself and the first column multiplied by e yields a matrix equivalent to C, hence equivalent to A, having the entry $d=e m+f c_{2}$. Since d divides m but, in view of the choice of m, has no fewer prime factors than m, one sees that m is the product of a unit in R with d. Therefore, m divides c_{2} since d divides c_{2}.

