Math 520B Written Assignment No. 4

due Friday, November 18, 2005

Directions. Although you may refer to books for definitions and standard theorems, searching for solutions to these written exercises is **not** permitted. You may not seek help from others.

Bear in mind that rings are always assumed to have a multiplicative identity, and a homomorphism of rings is always assumed to carry the multiplicative identity of its domain to that of its target. Recall that if T is a ring, the term T-algebra indicates, by definition, a pair $\langle R, \rho \rangle$ where R is a ring and $\rho: T \to R$ is a ring homomorphism.

- 1. Let F be a field, and let V and W be finite-dimensional vector spaces over F. Recall that the ring of endomorphisms of an F-vector space is an F-algebra.
 - (a) Explain why for $f \in \operatorname{End}_F(V)$ and $g \in \operatorname{End}_F(W)$ there is a unique $h = f \otimes g \in \operatorname{End}_F(V \otimes_F W)$ for which

$$h(x\otimes y) = f(x)\otimes g(y)$$

(b) Show that the map

$$\operatorname{End}_F(V) \times \operatorname{End}_F(W) \longrightarrow \operatorname{End}_F(V \otimes_F W)$$

given by $(f,g) \mapsto f \otimes g$ is *F*-bilinear.

(c) Prove that the bilinear map in the previous part provides an isomorphism

$$\operatorname{End}_F(V) \otimes_F \operatorname{End}_F(W) \longrightarrow \operatorname{End}_F(V \otimes_F W)$$

2. Let F be a field, V an n-dimensional vector space over $F, \otimes^p V$ the vector space

$$\otimes^p V = V \otimes_F V \otimes_F \dots \otimes_F V$$

$$p \text{ times}$$

with the convention $\otimes^0 V = F$, and T(V) the direct sum

$$T(V) = \bigoplus_{p \ge 0} \otimes^p V \quad .$$

Endow T(V) with the structure of a non-commutative F-algebra as follows:

(a) Define canonical bilinear maps

$$\otimes^p V \times \otimes^q V \longrightarrow \otimes^{p+q} V$$

(b) Use the bilinear maps of the previous item with standard facts about direct sums to define multiplication

$$T(V) \times T(V) \longrightarrow T(V)$$
 .

- 3. With F, V, and T(V) as in the previous exercise, do the following:
 - (a) Prove that if V is 1-dimensional over F, then T(V) is isomorphic to the polynomial ring F[t].
 - (b) State and prove a universal (initial) mapping property for the tensor algebra T(V).
- 4. Let A be a commutative ring and I, J ideals in R. Prove that

$$A/I \otimes_A A/J \cong A/(I+J)$$

5. Let F be a field, $i: F[t] \to F[x, y]$ the unique F-algebra homomorphism for which i(t) = x and $j: F[t] \to F[x, y]$ the unique F-algebra homomorphism for which j(t) = y.

Let V be the F-vector space having basis $\{X, Y\}$ which may be canonically identified with the subspace $\otimes^1 V \subset T(V)$. Let $i': F[t] \to T(V)$ be the unique F-algebra homomorphism for which i'(t) = X and $j': F[t] \to T(V)$ be the unique F-algebra homomorphism for which j'(t) = Y.

- (a) Show that (F[x, y], i, j) is universal-initial among triples (X, f, g) where X is a centered F-algebra, and f, g are F-algebra homomorphisms satisfying f(p)g(q) = g(q)f(p) for all $p, q \in F[t]$.
- (b) Show that (T(V), i', j') is universal-initial among triples (X, f, g) where X is a centered F-algebra, and f, g are any F-algebra homomorphisms.