Written Assignment No. 5

due Wednesday, December 7, 2005

General Directions: Written assignments should be submitted typeset. What you submit must represent your own work.

Assigned Exercises

1. Decompose the polynomial $t^{12}-1$ into irreducible factors in the $\operatorname{ring}(\mathbf{Z} / 5 \mathbf{Z})[t]$.
2. Decompose the polynomial $t^{8}-1$ into irreducible factors in the ring $(\mathbf{Z} / 2 \mathbf{Z})[t]$.
3. Let G denote the ring $\mathbf{Z}+\mathbf{Z} \sqrt{-1}$ of Gaussian integers.
(a) Find the set G^{*} of all units in G.
(b) Find a greatest common divisor in G for 2 and $5-\sqrt{-1}$.
4. Let R denote the ring $\mathbf{Z}+\mathbf{Z} \sqrt{-5}$. Explain why 14 and $6+2 \sqrt{-5}$ have no greatest common divisor in R. Hint: Look at the norms of these elements.
5. Let $m \geq 0$ be an integer, and let R denote the $\operatorname{ring} \mathbf{Z}+\mathbf{Z} \sqrt{-5}$. Let T_{m} denote the additive subgroup of R given by

$$
T_{m}=\mathbf{Z} \cdot 7+\mathbf{Z} \cdot(m-\sqrt{-5})
$$

(a) Find the smallest value of $m \geq 0$ for which T_{m} is an ideal in R.
(b) Find a familiar ring that is isomorphic to the quotient ring R / T_{m} for the value of m obtained in the previous part.

