Written Assignment No. 1

due September 28, 2005

General Directions: Written assignments should be submitted typeset. What you submit must represent your own work.

Example of a Solved Exercise

Please note that the directions for this solved exercise differ from those for the exercises in the present assignment.

Prove the following statement: If the number of elements in a finite group G with identity e is even, show that there is at least one element g in G such that $g \neq e$ but $g * g=e$.

Proof. Let $2 n$ be the number of elements of the given finite group G. The assertion is that there is at least one element of G other than e for which $g * g=e$, i.e., $g=g^{-1}$. If this were not the case then for every $g \neq e$ in G one would have $g \neq g^{-1}$, i.e., g and g^{-1} would be different elements. So the set $G-\{e\}$ would be the disjoint union of two element subsets of the form $\left\{g, g^{-1}\right\}$, and, therefore, the number $|G-\{e\}|$ of elements of $G-\{e\}$ would be even. Since G is the disjoint union of $\{e\}$ and $G-\{e\}$,

$$
|G|=1+|G-\{e\}|
$$

and, therefore, the number of elements of G would be odd. Hence, if the number of elements of G is even, there must be at least one element of $G\{e\}$ for which $g * g=e$.

Assigned Exercises

Read these directions carefully: for each of the following statements either provide a proof that the statement is true or label the statement as false and provide justification.

1. The multiplicative group of the integers mod 11 is a cyclic group.
2. If G is an abelian group with identity e, then the set T of all elements $t \in G$ such that $t^{2}=e$ is a subgroup of G.
