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1 Linear Combinations and Span

Definition. If V is a vector space and v1, v2, . . . , vr are elements of V
(vectors), then a linear combination of v1, v2, . . . , vr is an element of V
having the form c1v1 + c2v2 + . . . + crvr for some scalars c1, c2, . . . , cr.

Proposition. The set of all linear combinations of v1, v2, . . . , vr is a
linear subspace of V .

The proof is obvious.

Definition. The set of all linear combinations of v1, v2, . . . , vr is called
the linear span of v1, v2, . . . , vr or may also be called the linear subspace
of V generated by v1, v2, . . . , vr.

2 The Row and Column Spaces of a Matrix

Suppose M is an m× n matrix with

columns M1,M2, . . .Mn

rows M1,M2, . . .Mm (superscripts)

Definition.

The column space of M is the linear span of M1,M2, . . .Mn.

The row space of M is the linear span of M1,M2, . . .Mm.

Proposition. If Rn fM→ Rm is the linear map given by fM (x) = Mx,
then the image of fM is the column space of M .

Proof. The nature of matrix multiplication is such that

Mx = x1M1 + x2M2 + . . . xnMn .



3 Effect of Row Operations on a Matrix: I

Row Space Unchanged

Proposition. For a given matrix each of the three kinds of elementary
row operations leaves the row space of the matrix unchanged.

Proof. Use case by case checking.

4 Effect of Row Operations on a Matrix: II

Linear Relations Among Columns Unchanged

Proposition. For a given matrix each of the three kinds of elementary row operations
leaves the set of linear relations among the columns unchanged.

Proof. A linear relation among the columns of M is a relation, if true, of the form

a1M1 + . . . + anMn = b1M1 + . . . + bnMn

for scalars a1, . . . , an, b1, . . . , bn. Such a relation holds if and only if

(a1 − b1)M1 + . . . (an − bn)Mn = ~0 .

This holds if and only if the column a− b is a solution of the linear system of equations

Mx = ~0

by application of the relation

Mx = x1M1 + . . . + xnMn

to the case x = a− b.

5 Linearly Independent Vectors

Let V be any vector space.
Definition. A sequence v1, v2, . . . , vr of elements of V is linearly inde-
pendent if no non-trivial linear combination of v1, v2, . . . , vr vanishes.

Re-stated:

v1, v2, . . . , vr are linearly independent if and only if the only solution of

c1v1 + c2v2 + . . . crvr = ~0

is given by
c1 = c2 = . . . = cr = 0

Definition. A sequence v1, v2, . . . , vr of elements of V is linearly de-
pendent if it is not linearly independent.
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6 Example of Linear Independence

In Rn the unit vectors on the n positive coordinate axes
1
0
0
...
0

 ,


0
1
0
...
0

 , . . . ,


0
0
...
0
1


are linearly independent.

7 Example of Linear Dependence

Example. In R2 the 3 vectors(
1
0

)
,

(
0
1

)
,

(
2

− 3

)
are linearly dependent since(

2
− 3

)
= 2

(
1
0

)
− 3

(
0
1

)
.

8 Another Example

Proposition. The columns M1, M2, . . . Mn of an m × n matrix are
linearly independent if and only if the only solution of the linear system
Mx = 0 is the solution x = 0.

Re-statement: For an m× n matrix M the columns M1, M2, . . . Mn

are linearly independent if and only if the kernel of the linear map

Rn fM−→ Rm

consists only of the vector 0.

And again: For an m × n matrix M the columns M1, M2, . . . Mn

are linearly dependent if and only if there is a vector x in Rn such that
x 6= 0 yet Mx = 0.
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9 The Uniqueness of Reduced Row Echelon Form

Proposition. There is only one reduced row echelon form that may be
obtained from a given matrix.

Proof. This boils down to the question of whether, for matrices of given
size, a matrix in reduced row echelon form is completely characterized
by the linear relations among its columns. This is seen to be true as
follows:

1. The indices corresponding to pivot columns (columns containing
leading 1’s in reduced row echelon form) are the indices of the “left-
most” maximal linearly independent subset the of set of columns.

2. In reduced row echelon form each non-pivot column is a linear
combination, in a unique way, of the pivot columns to its left.

10 Finite Dimensional Vector Spaces

Definition. A vector space V is finite-dimensional (or finitely spanned
or finitely generated) if there is a finite sequence of elements v1, v2, . . . , vr
in V such that V is the linear span of v1, v2, . . . , vr.

This means that each v in V is a linear combination of v1, v2, . . . , vr.

Example. Rn is finite-dimensional since it is spanned by
1
0
...
0

 ,


0
1
...
0

 , . . . ,


0
0
...
1

 .

11 Infinite Linearly Independent Sets

Definition. If V is a vector space, a subset S, finite or infinite, of V is
linearly independent if each finite sequence of distinct members of S is
linearly independent.

Example. Let P be the vector space of all polynomials in the variable
t. Then the set

S =
{

1, t, t2, t3, . . . , tk, . . .
}

of all powers of t is a linearly independent set. (This may be proved
easily using Taylor’s Theorem.)
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12 Infinite Spanning Sets

Definition. If V is a vector space, a subset S, finite or infinite, of V
spans or generates V if each member of V is a linear combination of the
members of a finite sequence in S.

Example. Let P be the vector space of all polynomials in the variable
t. Then the set

S =
{

1, t, t2, t3, . . . , tk, . . .
}

of all powers of t spans P (by the definition of polynomial).

13 A Fundamental Inequality

Proposition. In any finite-dimensional vector space the number of elements in any
linearly independent sequence is at most equal to the number of elements in a given
spanning set.

Proof. Let the vector space be spanned by w1, . . . , wm, and let v1, . . . vn be a linearly
independent sequence. The task is to show n ≤ m.

Since w1, . . . , wm is a spanning set, one has

vj = a1jw1 + a2jw2 + . . . + amjwm

for each j, 1 ≤ j ≤ n. One may express this very concisely by writing

v = wA

where v is the 1× n row (v1v2 . . . vn) of elements of V , w is the 1×m row (w1w2 . . . wm)
of elements of V , and A is the m× n matrix A = (aij).

If n > m, then the reduced row echelon form of A can have at most m non-zero rows and,
therefore, at most m pivot columns. So at least one column of A is not a pivot column.
This means that column is a linear combination of the pivot columns to its left. Hence,
if x is the column of n coefficients of the ensuing linear relation Ax = 0 with x 6= 0, then
one has

vx = (wA)x = w(Ax) = w 0 = 0 ,

which means that v1, . . . vn cannot be linearly independent, a contradiction made possible
by assuming n > m. Hence n ≤ m.

14 Example of an Infinite Dimensional Vector Space

The vector space of all polynomials (of all degrees) in the variable t is not
a finite dimensional vector space because it contains the infinite linearly
independent set

{
1, t, t2, . . .

}
of all powers of t.
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15 Basis of a Vector Space

Definition. A basis of a vector space V is any maximal linearly inde-
pendent subset of the vector space.

Here the word maximal indicates a linearly independent set that is not
a subset of a (strictly) larger linearly independent set.

Proposition. A subset of a vector space V is a basis if and only if it is
a linearly independent set and it spans V .

Proof. Certainly a linearly independent spanning set must be a max-
imal linearly independent set. Conversely if S is a maximal linearly
independent set, and v is any element of V , then the set S ∪{v} cannot
be linearly independent by the maximality of S. Hence, there must
be a non-trivial linear relation among the members of a finite subset of
S ∪ {v}. The element v must be involved with non-zero coefficient in
that linear relation since there can be no such relation among finitely
many members of S. That linear relation can be used to obtain v as a
linear combination of finitely many members of S. Therefore v, which
was an arbitary member of V , lies in the span of S.

16 Examples of Bases

• The n unit vectors on the positive coordinate axes form a basis of Rn.

• The (infinite) set of all powers of t forms a basis of the space of all
polynomials in the variable t.

17 Dimension of a Vector Space

Theorem. In a finite dimensional vector space any two bases have the
same number of elements.

Proof. Apply the fundamental inequality twice.

Definition. The dimension of a finite dimensional vector space is the
number of elements in any basis.

Example. Rn has dimension n.
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18 Assignment: Exercise No. 2

Let f be the linear map from R4 to R4 that is given by the matrix
1 2 −4 7

− 2 −1 −1 −8
− 1 4 −14 5

5 7 −11 29

 .

a. Obtain a parametric representation for the kernel of f .
b. Find a pair of equations in 4 variables that characterize the
image of f .
c. List a pair of equations in 4 variables that characterize the kernel
of f .
d. Give a parametric representation for the image of f .

19 RREF of the Generic Augmented Matrix


1 2 −4 7 y1
− 2 −1 −1 −8 y2
− 1 4 −14 5 y3

5 7 −11 29 y4


row ops−→

1 0 2 3 −(y1 + 2y2)/3
0 1 −3 2 (2y1 + y2)/3
0 0 0 0 y3 − 3y1 − 2y2
0 0 0 0 y4 − 3y1 + y2



20 Part (a): Parametric Representation of the Kernel

• y1 = y2 = y3 = y4 = 0.

• Columns 1 and 2 are pivot columns.

• Equations may be solved for x1 and x2 in terms of x3 and x4.

• The two non-trivial equations:{
x1 = −2x3 − 3x4

x2 = 3x3 − 2x4

• Let u = x3 and v = x4:
x1

x2

x3

x4

 = u


−2

3
1
0

+ v


−3
− 2

0
1


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21 Part (a): Observations

• The parametric representation:
x1

x2

x3

x4

 = u


−2

3
1
0

+ v


−3
− 2

0
1


• Two parameters u and v.

• The kernel is a plane through 0 in R4.

• The kernel is a linear subspace of R4.

• A basis of the kernel. 

−2

3
1
0

 ,


−3
− 2

0
1




• The kernel has dimension 2.

• The linear map R2 φ−→ R4

φ(u, v) = u


−2

3
1
0

+ v


−3
− 2

0
1


is an isomorphism from R2 to the kernel.

• u and v are “coordinates” for points in the kernel relative to this basis.

22 Part (b): Equations for the Image

• Want equations in the yj .

• Look at the rows of the reduced augmented matrix with zeros in the
“coefficient” columns.

• Use the corresponding linear equations.

• {
y3 − 3y1 − 2y2 = 0
y4 − 3y1 + y2 = 0
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23 Part (c): Equations for the Kernel

• Want equations in the xi.

• Look at the rows of the reduced augmented matrix that are non-zero
in the “coefficient” columns.

• {
x1 + 2x3 + 3x4 = 0
x2 − 3x3 + 2x4 = 0

• This is easier than part(a).

24 Part (d): Parametric Representation for the Image

• A basis for the image is given by the pivot columns in the original ma-
trix.

• The pivot columns are the first and second:


1
− 2
− 1

5

 ,


2

− 1
4
7




• Parametric Representation:

ψ(s, t) = s


1
− 2
− 1

5

+ t


2

− 1
4
7


• Easier than part(b).

• The linear map R2 ψ−→ R4 is an isomorphism from R2 to the image.

• s and t are “coordinates” for points in the image relative to this basis.
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25 Parametric Representations, Coordinates, and Bases

• To give a parametric representation of a linear subspace in a vector
space is to represent a general member of the subspace as a linear
combination of the vectors in some basis of the subspace.

• The coefficients of the basis in such a representation are “coordinates”
in the linear subspace relative to the basis.

• To have coordinates for the points of a linear subspace of dimension k
is to have a linear way of matching points in the subspace with points
in Rk.

• To have coordinates for the points of a linear subspace of dimension k
is to have an isomorphism from Rk to the subspace.
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