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1 Linear Combinations and Span

Definition. If V is a vector space and vy, vs,..., v, are elements of V'
(vectors), then a linear combination of v1,ve,...,v, is an element of V
having the form cijv1 + covg + ... 4 ¢pv, for some scalars ci,cs, ..., Cp.
Proposition. The set of all linear combinations of vy, vs,...,v, is a
linear subspace of V.
The proof is obvious.
Definition. The set of all linear combinations of vy, vs, ..., v, is called
the linear span of vy, vs, ..., v, or may also be called the linear subspace
of V generated by vi,va,. .., 0.
2 The Row and Column Spaces of a Matrix

Suppose M is an m X n matrix with

columns My, Ms, ... M,

rows MY M? ... M™ (superscripts)
Definition.

The column space of M is the linear span of My, Ms, ... M,.

The row space of M is the linear span of M, M2,... M™.
Proposition. If R" I R™ i the linear map given by fa(z) = Mz,

then the image of fjs is the column space of M.

Proof. The nature of matrix multiplication is such that

Mx = lel +$2M2 + -rnMn



Effect of Row Operations on a Matrix: 1

Row Space Unchanged

Proposition. For a given matrix each of the three kinds of elementary
row operations leaves the row space of the matrix unchanged.

Proof. Use case by case checking.

Effect of Row Operations on a Matrix: 11

Linear Relations Among Columns Unchanged

Proposition. For a given matrix each of the three kinds of elementary row operations
leaves the set of linear relations among the columns unchanged.

Proof. A linear relation among the columns of M is a relation, if true, of the form
aiMi+ ... +a, M, = byMy+... +b,M,
for scalars ay,...,an,b1,...,b,. Such a relation holds if and only if
(g —b))My + ... (an —bp)M,, = 0
This holds if and only if the column a — b is a solution of the linear system of equations
Mz = 0
by application of the relation
Mx = 1M1+ ... +z,M,

to the case x = a — b.

Linearly Independent Vectors

Let V' be any vector space.

Definition. A sequence vy, vs, ..., v, of elements of V' is linearly inde-
pendent if no non-trivial linear combination of vy, va, ..., v, vanishes.
Re-stated:
v1, V3, ..., 0, are linearly independent if and only if the only solution of
C1V1 + CoVg + ... CrU, = 6
is given by
G = ¢y = =c¢ =0
Definition. A sequence vy,vs,...,v, of elements of V is linearly de-

pendent if it is not linearly independent.



6 Example of Linear Independence

In R"™ the unit vectors on the n positive coordinate axes

1 0 0
0 1 0
O 9 0 9 b '

: 0
0 0 1

are linearly independent.

7 Example of Linear Dependence

Example. In R? the 3 vectors

(o) (1) (5)

are linearly dependent since

(-3)=2(0) (V)

8 Another Example

Proposition. The columns My, M, ... M, of an m X n matrix are
linearly independent if and only if the only solution of the linear system
Max = 0 is the solution x = 0.

Re-statement: For an m x n matrix M the columns My, M, ... M,
are linearly independent if and only if the kernel of the linear map

consists only of the vector 0.
And again: For an m x n matrix M the columns My, My, ... M,

are linearly dependent if and only if there is a vector z in R" such that
x#0yet Mz = 0.



9 The Uniqueness of Reduced Row Echelon Form

Proposition. There is only one reduced row echelon form that may be
obtained from a given matrix.

Proof. This boils down to the question of whether, for matrices of given
size, a matrix in reduced row echelon form is completely characterized
by the linear relations among its columns. This is seen to be true as
follows:

1. The indices corresponding to pivot columns (columns containing
leading 1’s in reduced row echelon form) are the indices of the “left-
most” maximal linearly independent subset the of set of columns.

2. In reduced row echelon form each non-pivot column is a linear
combination, in a unique way, of the pivot columns to its left.

10 Finite Dimensional Vector Spaces

Definition. A vector space V' is finite-dimensional (or finitely spanned
or finitely generated) if there is a finite sequence of elements vy, ve, ..., v,
in V such that V is the linear span of vq,va,...,v,.

This means that each v in V is a linear combination of vy, v, ..., v,.

Example. R" is finite-dimensional since it is spanned by

1 0 0
0 1 0
0 0 1

11 Infinite Linearly Independent Sets

Definition. If V' is a vector space, a subset S, finite or infinite, of V' is
linearly independent if each finite sequence of distinct members of S is
linearly independent.

Example. Let P be the vector space of all polynomials in the variable
t. Then the set
S = {8tk

of all powers of t is a linearly independent set. (This may be proved
easily using Taylor’s Theorem.)



12 Infinite Spanning Sets

Definition. If V is a vector space, a subset S, finite or infinite, of V'
spans or generates V if each member of V' is a linear combination of the
members of a finite sequence in S.

Example. Let P be the vector space of all polynomials in the variable
t. Then the set
S = {Lt 8, .t

of all powers of ¢ spans P (by the definition of polynomial).

13 A Fundamental Inequality

Proposition. In any finite-dimensional vector space the number of elements in any
linearly independent sequence is at most equal to the number of elements in a given
spanning set.

Proof. Let the vector space be spanned by wy,...,w,, and let vy,...v, be a linearly
independent sequence. The task is to show n < m.

Since wy, ..., w,, is a spanning set, one has
Vj = Q1;W1 + AW + ... + QW
for each j, 1 < j <n. One may express this very concisely by writing
v = wA

where v is the 1 x n row (vivy...v,) of elements of V', w is the 1 x m row (wiws ... wy,)
of elements of V, and A is the m x n matrix A = (a;;).

If n > m, then the reduced row echelon form of A can have at most m non-zero rows and,
therefore, at most m pivot columns. So at least one column of A is not a pivot column.
This means that column is a linear combination of the pivot columns to its left. Hence,
if x is the column of n coefficients of the ensuing linear relation Az = 0 with x # 0, then
one has

v = (wA)r = w(Az) = w0 = 0,

which means that vy, ... v, cannot be linearly independent, a contradiction made possible
by assuming n > m. Hence n < m.

14 Example of an Infinite Dimensional Vector Space

The vector space of all polynomials (of all degrees) in the variable ¢ is not
a finite dimensional vector space because it contains the infinite linearly
independent set {1, t,t2, ... } of all powers of t.



15 Basis of a Vector Space

Definition. A basis of a vector space V is any maximal linearly inde-
pendent subset of the vector space.

Here the word maxzimal indicates a linearly independent set that is not
a subset of a (strictly) larger linearly independent set.

Proposition. A subset of a vector space V is a basis if and only if it is
a linearly independent set and it spans V.

Proof. Certainly a linearly independent spanning set must be a max-
imal linearly independent set. Conversely if S is a maximal linearly
independent set, and v is any element of V', then the set SU{v} cannot
be linearly independent by the maximality of S. Hence, there must
be a non-trivial linear relation among the members of a finite subset of
S U {v}. The element v must be involved with non-zero coefficient in
that linear relation since there can be no such relation among finitely
many members of S. That linear relation can be used to obtain v as a
linear combination of finitely many members of S. Therefore v, which
was an arbitary member of V| lies in the span of S.

16 Examples of Bases

e The n unit vectors on the positive coordinate axes form a basis of R".

e The (infinite) set of all powers of ¢ forms a basis of the space of all
polynomials in the variable t.

17 Dimension of a Vector Space

Theorem. In a finite dimensional vector space any two bases have the
same number of elements.

Proof. Apply the fundamental inequality twice.

Definition. The dimension of a finite dimensional vector space is the
number of elements in any basis.

Example. R" has dimension n.



18 Assignment: Exercise No. 2

Let f be the linear map from R* to R* that is given by the matrix

1 2 -4 7
-2 -1 -1 -8
-1 4 —14 )

5 7T =11 29

a. Obtain a parametric representation for the kernel of f.

b. Find a pair of equations in 4 variables that characterize the
image of f.

c. List a pair of equations in 4 variables that characterize the kernel
of f.

d. Give a parametric representation for the image of f.

19 RREF of the Generic Augmented Matrix

1 2 —4 7 Y1
-2 -1 -1 -8
—1 4 —14 5 ys

5 7 —11 29 y4

row ops
—

1L 0 2 3 —(y1+2y2)/3
01 =3 2 (2y1+2)/3
0 O 0 0 y3—3y1—2y2
00 0 0 wy1—3y1+ue

20 Part (a): Parametric Representation of the Kernel

Yy =Yy =ys = ys = 0.

e Columns 1 and 2 are pivot columns.

Equations may be solved for x; and x5 in terms of x3 and x4.

The two non-trivial equations:

T = —2.%‘3 — 3{E4
To = 33?3 — 2.’1,‘4

o Let u = z3 and v = x4:

X1 —2 -3
€To _ 3 -2
I3 - 1 v 0
T4 0 1



21 Part (a): Observations

The parametric representation:

I —2 -3
i) - u 3 + -2
I3 o 1 0
Ty 0 1
Two parameters u and v.
The kernel is a plane through 0 in R
The kernel is a linear subspace of R?.
A basis of the kernel.
-2 -3
3 -2
1|’ 0
0 1
The kernel has dimension 2.
The linear map R? %, R
-2 -3
3 -2
o(u,v) = u LT 0
0 1

is an isomorphism from R? to the kernel.

u and v are “coordinates” for points in the kernel relative to this basis.

22 Part (b): Equations for the Image

Want equations in the y;.

Look at the rows of the reduced augmented matrix with zeros in the
“coefficient” columns.

Use the corresponding linear equations.

|
o

Y3 — 3y1 — 2y2
Yya—3y1+y2 = 0



23 Part (c): Equations for the Kernel

Want equations in the x;.

Look at the rows of the reduced augmented matrix that are non-zero
in the “coefficient” columns.

|
o

X1 +21‘3 +3I4
To—3x3+2x4 = 0

This is easier than part(a).

24 Part (d): Parametric Representation for the Image

A Dasis for the image is given by the pivot columns in the original ma-
trix.

The pivot columns are the first and second:

1 2

-2 —1

-1 |’ 4

5 7

e Parametric Representation:

1 2
-2 -1
P(s,t) = s 1 +t 4
5 7

e Easier than part(b).

The linear map R? ¥ Riisan isomorphism from R? to the image.

s and t are “coordinates” for points in the image relative to this basis.



25 Parametric Representations, Coordinates, and Bases

e To give a parametric representation of a linear subspace in a vector
space is to represent a general member of the subspace as a linear
combination of the vectors in some basis of the subspace.

e The coefficients of the basis in such a representation are “coordinates”
in the linear subspace relative to the basis.

e To have coordinates for the points of a linear subspace of dimension k
is to have a linear way of matching points in the subspace with points
. k
in R".

e To have coordinates for the points of a linear subspace of dimension k
is to have an isomorphism from R” to the subspace.

10



