Linear Algebra Handout:
 Two Solved Examples

February 28, 2003

1. Let W_{1} and W_{2} be the subspaces of \mathbf{R}^{3} given by

$$
W_{1}=\operatorname{span}\{(1,2,3),(2,1,1)\} \quad \text { and } \quad W_{2}=\operatorname{span}\{(1,0,1),(3,0,-1)\} .
$$

Find a set of generating vectors for $W_{1} \cap W_{2}$.
Response. W_{1} and W_{2} are each spanned by two linearly independent vectors, and for that reason each is a plane through the origin in \mathbf{R}^{3}. One therefore expects their intersection to be a line through the origin in \mathbf{R}^{3}, i.e., the set of all scalar multiples of a single vector. The strategy adopted is to find equations defining W_{1} and W_{2} and then solve both equations simultaneously to find $W_{1} \cap W_{2}$.
For W_{1} one seeks a vector (a, b, c) such that

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\binom{0}{0} .
$$

Solving the corresponding linear system of equations using row operations, one finds that the most general such vector (a, b, c) is a scalar multiple of $(1,-5,3)$, and "the" equation of W_{1} is $x-5 y+3 z=0$.
A similar method can be used for W_{2}. On the other hand, one sees quickly by inspection that "the" equation of W_{2} is $y=0$. Then solving the two equations simultaneously - for example, using row operations on the matrix

$$
\left(\begin{array}{rrr}
1 & -5 & 3 \\
0 & 1 & 0
\end{array}\right)
$$

- one finds that a basis of $W_{1} \cap W_{2}$ is given by the single vector $(-3,0,1)$, i.e.,

$$
W_{1} \cap W_{2}=\operatorname{span}\{(-3,0,1)\}
$$

2. Find a particular solution of the linear differential equation

$$
y^{\prime \prime}+4 y=x^{2}
$$

Response. In the study of differential equations one learns to look for particular solutions in various ways. In this case it will be fruitful to propose

$$
y=a+b x+c x^{2}
$$

as a trial solution. With this y one finds $y^{\prime \prime}=2 c$, and, therefore,

$$
y^{\prime \prime}+4 y=(4 a+2 c)+4 b x+4 c x^{2}
$$

To have the right-hand side evaluate as x^{2} one needs

$$
\begin{aligned}
4 a+2 c & =0 \\
4 b & =0 \\
4 c & =1
\end{aligned}
$$

Solving this system for a, b, c one obtains

$$
y=\frac{1}{4} x^{2}-\frac{1}{8} .
$$

