Math 220 Class Slides

http://math.albany.edu/pers/hammond/course/mat220/ Course Assignments Slides

March 6, 2008

1 Parametric Representations, Coordinates, and Bases

Recall:

- To give a parametric representation of a linear subspace in a vector space is to represent a general member of the subspace as a linear combination of the vectors in some basis of the subspace.
- The coefficients of the basis in such a representation are "coordinates" in the linear subspace relative to the basis.
- To have coordinates for the points of a linear subspace of dimension k is to have a linear way of matching points in the subspace with points in \mathbf{R}^k .
- To have coordinates for the points of a linear subspace of dimension k is to have an isomorphism from \mathbf{R}^k to the subspace.

2 Isomorphisms

Definition. Let V, W be vector spaces. An *isomorphism* from V to W is a linear map $V \xrightarrow{\phi} W$ that establishes a one-to-one correspondence of elements of V with elements of W.

Proposition. If there is an isomorphism from V to W, then there is an "inverse" isomorphism from W to V.

Proof. The inverse of ϕ is an isomorphism from W to V.

Definition. V and W are isomorphic vector spaces if there is an isomorphism from one to the other.

If U is isomorphic with V and V is isomorphic with W, then U is isomorphic with W.

Proof. Compose an isomorphism from U to V with an isomorphism from V to W.

3 Isomorphisms and Dimension

Theorem. If V and W are isomorphic vector spaces, then $\dim V = \dim W$.

Proof. It is an exercise to show that if v_1, v_2, \ldots, v_n is a basis of V, then $\phi(v_1), \phi(v_2), \ldots, \phi(v_n)$ is a basis of W.

Theorem. Any vector space of dimension n is isomorphic to \mathbf{R}^n .

Proof. If $\mathbf{v} = v_1, v_2, \ldots, v_n$ is a basis of V, then the linear map

$$\mathbf{R}^n \stackrel{\alpha \mathbf{v}}{\longrightarrow} V$$

that is defined by

$$\alpha_{\mathbf{v}}(x) = (v_1 v_2 \dots v_n) \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = x_1 v_1 + x_2 v_2 + \dots x_n v_n$$

is an isomorphism from \mathbf{R}^n to V.

4 Coordinates with respect to a Basis

• Note: When v_1, \ldots, v_r are linearly independent, the coefficients for a given linear combination of them are unique:

 $x_1v_1 + \ldots + x_rv_r = y_1v_1 + \ldots + y_rv_r$ if and only if $x_1 = y_1, \ldots, x_r = y_r$.

• **Definition.** If v_1, \ldots, v_n form a basis of V, then x_1, \ldots, x_n are called the *coordinates of* v with respect to v_1, \ldots, v_r when

$$v = x_1 v_1 + \ldots + x_n v_n \quad .$$

- Example: 2, -1, and 3 are the coordinates of the point (2, -1, 3) with respect to the standard basis of \mathbb{R}^3 .
- Example: 2, -1, and 3 are the coordinates of the polynomial $3t^2 t + 2$ with respect to the basis $\{1, t, t^2\}$ of the 3-dimensional vector space P_2 consisting of all polynomials with degree at most 2 in the variable t.
- The order in which the members of a basis are listed affects the ordering of coordinates taken with respect to that basis.

5 Linearity in the Euclidean Case

Recall:

Theorem. For any linear map $\mathbf{R}^n \xrightarrow{\phi} \mathbf{R}^m$ between Euclidean spaces there is a unique $m \times n$ matrix M such that $\phi = f_M$.

Re-stated: Every linear map from \mathbf{R}^n to \mathbf{R}^m is given in the usual way by some matrix.

6 The Fundamental Theorem on Linear Maps

Theorem. If $V \xrightarrow{\phi} W$ is a linear map between vector spaces with V finite-dimensional, then

 $\dim(V) = \dim(\operatorname{Kernel}\phi) + \dim(\operatorname{Image}\phi)$

Proof when both V and W are finite-dimensional: Let

 $n = \dim V$ and $m = \dim W$.

Let

$$\mathbf{v} = (v_1 v_2 \dots v_n)$$
 and $\mathbf{w} = (w_1 w_2 \dots w_m)$

be bases of V and W.

Use $\alpha_{\mathbf{v}}$ and $\alpha_{\mathbf{w}}$ to "transport" ϕ to

$$\mathbf{R}^n \stackrel{f}{\longrightarrow} \mathbf{R}^m$$

The transport of ϕ is the linear map f in this diagram:

$$\begin{array}{ccccc}
V & \stackrel{\phi}{\longrightarrow} & W \\
\alpha_{\mathbf{v}} \uparrow & & \uparrow \alpha_{\mathbf{w}} \\
\mathbf{R}^n & \stackrel{\phi}{\longrightarrow} & \mathbf{R}^m
\end{array}$$

f is defined by

$$f = \alpha_{\mathbf{w}}^{-1} \circ \phi \circ \alpha_{\mathbf{v}} \quad .$$

Since $\alpha_{\mathbf{v}}$ and $\alpha_{\mathbf{w}}$ are isomorphisms, one has

$$\dim \operatorname{Ker}(\phi) = \dim \operatorname{Ker}(f)$$
 and $\dim \operatorname{Im}(\phi) = \dim \operatorname{Im}(f)$.

So the theorem is proved by "transport" to the Euclidean case.

7 Matrix of a Linear Map for a Pair of Bases

The transport diagram:

The linear map f between Euclidean spaces has a matrix M

$$f(x) = f_M(x) = Mx$$

Definition. *M* is called the *matrix of* ϕ *for the pair of bases*

$$\mathbf{v} = (v_1 v_2 \dots v_n)$$
 and $\mathbf{w} = (w_1 w_2 \dots w_m)$

8 Exercise No. 1

• Task: If possible, invert the 4×4 matrix

$$M = \begin{pmatrix} 1 & 2 & 1 & 2 \\ -2 & -1 & 3 & 2 \\ -2 & 2 & 6 & -1 \\ 1 & 0 & -2 & 0 \end{pmatrix}$$

• Form the 4×8 matrix

 $\begin{pmatrix} M & 1_4 \end{pmatrix}$

that augments M with the 4×4 identity matrix 1_4 , and use row operations to maneuver the first 4 columns of that into reduced row echelon form.

• In this case the RREF of the first 4 columns is 1_4 so the last 4 columns of the reduced matrix form the inverse of M, which is:

$$M^{-1} = \begin{pmatrix} 2 & -4 & -4 & -17 \\ -1 & 7/3 & 8/3 & 11 \\ 1 & -2 & -2 & -9 \\ 0 & 2/3 & 1/3 & 2 \end{pmatrix}$$

•

9 Exercise No. 2(b)

• Task: For the following 4×4 matrix M find

(a) the rank of the matrix

(b) a non-redundant set of linear equations in 4 variables that characterizes the linear relations among the rows of the matrix.

• Note: As explained in the previous class, this is essentially the same problem as that of finding linear equations for the image of the linear map

$$f_M(x) = Mx \quad .$$

• The matrix:

$$\left(\begin{array}{rrrrr}1&2&-4&7\\-2&-1&-1&-8\\5&7&-11&29\\-3&-6&12&-21\end{array}\right)$$

• The RREF of its **transpose**:

$$\left(\begin{array}{rrrrr} 1 & 0 & 3 & -3 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

- The rank of M is 2.
- A non-redundant characterizing set of row relations:

$$\begin{cases} -3y_1 + y_2 + y_3 &= 0\\ 3y_1 + y_4 &= 0 \end{cases}$$