Math 220 Class Slides

http://math.albany.edu/pers/hammond/course/mat220/
 Course Assignments Slides

March 6, 2008

1 Parametric Representations, Coordinates, and Bases

Recall:

- To give a parametric representation of a linear subspace in a vector space is to represent a general member of the subspace as a linear combination of the vectors in some basis of the subspace.
- The coefficients of the basis in such a representation are "coordinates" in the linear subspace relative to the basis.
- To have coordinates for the points of a linear subspace of dimension k is to have a linear way of matching points in the subspace with points in \mathbf{R}^{k}.
- To have coordinates for the points of a linear subspace of dimension k is to have an isomorphism from \mathbf{R}^{k} to the subspace.

2 Isomorphisms

Definition. Let V, W be vector spaces. An isomorphism from V to W is a linear map $V \xrightarrow{\phi} W$ that establishes a one-to-one correspondence of elements of V with elements of W.

Proposition. If there is an isomorphism from V to W, then there is an "inverse" isomorphism from W to V.

Proof. The inverse of ϕ is an isomorphism from W to V.
Definition. V and W are isomorphic vector spaces if there is an isomorphism from one to the other.

If U is isomorphic with V and V is isomorphic with W, then U is isomorphic with W.
Proof. Compose an isomorphism from U to V with an isomorphism from V to W.

3 Isomorphisms and Dimension

Theorem. If V and W are isomorphic vector spaces, then $\operatorname{dim} V=\operatorname{dim} W$.
Proof. It is an exercise to show that if $v_{1}, v_{2}, \ldots, v_{n}$ is a basis of V, then $\phi\left(v_{1}\right), \phi\left(v_{2}\right), \ldots, \phi\left(v_{n}\right)$ is a basis of W.

Theorem. Any vector space of dimension n is isomorphic to \mathbf{R}^{n}.

Proof. If $\mathbf{v}=v_{1}, v_{2}, \ldots, v_{n}$ is a basis of V, then the linear map

$$
\mathbf{R}^{n} \xrightarrow{\alpha_{\mathbf{v}}} V
$$

that is defined by

$$
\alpha_{\mathbf{v}}(x)=\left(v_{1} v_{2} \ldots v_{n}\right)\left(\begin{array}{r}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=x_{1} v_{1}+x_{2} v_{2}+\ldots x_{n} v_{n}
$$

is an isomorphism from \mathbf{R}^{n} to V.

4 Coordinates with respect to a Basis

- Note: When v_{1}, \ldots, v_{r} are linearly independent, the coefficients for a given linear combination of them are unique:

$$
x_{1} v_{1}+\ldots+x_{r} v_{r}=y_{1} v_{1}+\ldots+y_{r} v_{r} \text { if and only if } x_{1}=y_{1}, \ldots, x_{r}=y_{r} .
$$

- Definition. If v_{1}, \ldots, v_{n} form a basis of V, then x_{1}, \ldots, x_{n} are called the coordinates of v with respect to v_{1}, \ldots, v_{r} when

$$
v=x_{1} v_{1}+\ldots+x_{n} v_{n}
$$

- Example: 2, -1 , and 3 are the coordinates of the point $(2,-1,3)$ with respect to the standard basis of \mathbf{R}^{3}.
- Example: 2, -1 , and 3 are the coordinates of the polynomial $3 t^{2}-t+2$ with respect to the basis $\left\{1, t, t^{2}\right\}$ of the 3 -dimensional vector space P_{2} consisting of all polynomials with degree at most 2 in the variable t.
- The order in which the members of a basis are listed affects the ordering of coordinates taken with respect to that basis.

5 Linearity in the Euclidean Case

Recall:

Theorem. For any linear map $\mathbf{R}^{n} \xrightarrow{\phi} \mathbf{R}^{m}$ between Euclidean spaces there is a unique $m \times n$ matrix M such that $\phi=f_{M}$.

Re-stated: Every linear map from \mathbf{R}^{n} to \mathbf{R}^{m} is given in the usual way by some matrix.

6 The Fundamental Theorem on Linear Maps

Theorem. If $V \xrightarrow{\phi} W$ is a linear map between vector spaces with V finite-dimensional, then

$$
\operatorname{dim}(V)=\operatorname{dim}(\text { Kernel } \phi)+\operatorname{dim}(\text { Image } \phi)
$$

Proof when both V and W are finite-dimensional:
Let

$$
n=\operatorname{dim} V \text { and } m=\operatorname{dim} W
$$

Let

$$
\mathbf{v}=\left(v_{1} v_{2} \ldots v_{n}\right) \text { and } \mathbf{w}=\left(w_{1} w_{2} \ldots w_{m}\right)
$$

be bases of V and W.
Use $\alpha_{\mathbf{v}}$ and $\alpha_{\mathbf{w}}$ to "transport" ϕ to

$$
\mathbf{R}^{n} \xrightarrow{f} \mathbf{R}^{m} .
$$

The transport of ϕ is the linear map f in this diagram:

f is defined by

$$
f=\alpha_{\mathbf{w}}^{-1} \circ \phi \circ \alpha_{\mathbf{v}}
$$

Since $\alpha_{\mathbf{v}}$ and $\alpha_{\mathbf{w}}$ are isomorphisms, one has

$$
\operatorname{dim} \operatorname{Ker}(\phi)=\operatorname{dimKer}(f) \text { and } \operatorname{dimIm}(\phi)=\operatorname{dim} \operatorname{Im}(f)
$$

So the theorem is proved by "transport" to the Euclidean case.

7 Matrix of a Linear Map for a Pair of Bases

The transport diagram:

The linear map f between Euclidean spaces has a matrix M

$$
f(x)=f_{M}(x)=M x
$$

Definition. M is called the matrix of ϕ for the pair of bases

$$
\mathbf{v}=\left(v_{1} v_{2} \ldots v_{n}\right) \text { and } \mathbf{w}=\left(w_{1} w_{2} \ldots w_{m}\right)
$$

8 Exercise No. 1

- Task: If possible, invert the 4×4 matrix

$$
M=\left(\begin{array}{rrrr}
1 & 2 & 1 & 2 \\
-2 & -1 & 3 & 2 \\
-2 & 2 & 6 & -1 \\
1 & 0 & -2 & 0
\end{array}\right)
$$

- Form the 4×8 matrix

$$
\left(\begin{array}{ll}
M & 1_{4}
\end{array}\right)
$$

that augments M with the 4×4 identity matrix 1_{4}, and use row operations to maneuver the first 4 columns of that into reduced row echelon form.

- In this case the RREF of the first 4 columns is 1_{4} so the last 4 columns of the reduced matrix form the inverse of M, which is:

$$
M^{-1}=\left(\begin{array}{rrrr}
2 & -4 & -4 & -17 \\
-1 & 7 / 3 & 8 / 3 & 11 \\
1 & -2 & -2 & -9 \\
0 & 2 / 3 & 1 / 3 & 2
\end{array}\right)
$$

9 Exercise No. 2(b)

- Task: For the following 4×4 matrix M find
(a) the rank of the matrix
(b) a non-redundant set of linear equations in 4 variables that characterizes the linear relations among the rows of the matrix.
- Note: As explained in the previous class, this is essentially the same problem as that of finding linear equations for the image of the linear map

$$
f_{M}(x)=M x
$$

- The matrix:

$$
\left(\begin{array}{rrrr}
1 & 2 & -4 & 7 \\
-2 & -1 & -1 & -8 \\
5 & 7 & -11 & 29 \\
-3 & -6 & 12 & -21
\end{array}\right)
$$

- The RREF of its transpose:

$$
\left(\begin{array}{rrrr}
1 & 0 & 3 & -3 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

- The rank of M is 2 .
- A non-redundant characterizing set of row relations:

$$
\left\{\begin{aligned}
-3 y_{1}+y_{2}+y_{3} & =0 \\
3 y_{1}+y_{4} & =0
\end{aligned}\right.
$$

