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Recall that if S is a subset of n-dimensional space and P is a point of S we say that P is a
point in the interior of S or a point inside S if there is some (small) positive number r such
that every point of n-dimensional space within distance r of P is a point of S.

Recall that a function f of n variables is differentiable at a point inside its domain if it admits
first order approximation by a linear function near the given point.

Theorem. If a function f of n variables has an extreme value for the subset S of its domain at
a point P of S that is a point inside the domain of f where f is differentiable, then the gradient
vector ∇f(P ) of f at P must be perpendicular to the tangent vector at P of every differentiably
parameterized curve lying in S and passing through P .

Proof. Let G(t) be a differentiably parameterized curve contained in S and passing through P
when t = a. Since S is contained in the domain of f , the function h(t) = f(G(t)) is defined for
all values of t for which G(t) is defined, and since f is differentiable at P = G(a), the function
h is differentiable at a. In fact, the “chain rule” tells us that

h′(a) = ∇f(P ) ·G′(a) .

Since f has an extreme value relative to the set S at the point P and each G(t) is in S, it
follows that h, a function of one variable, has a local extreme value at t = a, and, therefore,
that h′(a) = 0. Consequently, ∇f(P ) is perpendicular to the tangent vector G′(a) of the curve
at P .

Corollary 1. If a function f of n variables has an extreme value for the subset S of its domain
at a point P of S that is a point inside S where f is differentiable, then the gradient vector
∇f(P ) must be the zero vector.

Proof. If P is a point inside S then every sufficiently short line segment passing through P must
be perpendicular to ∇f(P ), which means that every vector must be perpendicular to ∇f(P ).

Corollary 2. If a function f of n variables has an extreme value for the subset S = {g = 0}
of its domain at a point P of S where f and g are differentiable functions, then the gradient
∇f(P ) of f and the gradient ∇g(P ) of g must be parallel vectors.

Proof. The statement is formally true, but probably useless if ∇g(P ) = 0. We assume that
∇g(P ) is not the zero vector. In this case ∇g is perpendicular to the tangent hyperplane (i.e.,
plane if n = 3 or line if n = 2) to S at P . Every unit vector in the tangent hyperplane
is tangent to some small differentiably parameterized curve segment lying in S and passing
through P . Hence, by the theorem, ∇f(P ) is also perpendicular to each such curve segment,
and, hence, to the tangent hyperplane. Since a hyperplane has only one parallel class of normal
vectors, ∇f(P ) and ∇g(P ) must be parallel.

Remark. The theorem is useful also in the case where f is a function of 3 variables and the
constraint set S is a curve in space. Then the fact that P lies in S corresponds roughly to
two equations for P and the orthogonality condition of the theorem provides, in non-degenerate
situations an additional equation with the result that (usually) only finitely many such P are
possible. (Among these are points that are maxima, minima, and those that are neither.) This
is equivalent to the principle of “Lagrange multipliers” discussed in the text.


