Math 214
Follow-Up Assignment

May 13, 2002

  1. Find the gradient vector of the function f that is defined by

     f(x, y, z)  =   x^{4} y^{2} - y^{3} z^{2} + z x  .  

    Response:

     (\nabla f)(x, y, z)  =   
    (4 x^{3} y^{2} + z,  2 x^{4} y - 3 y^{2} z^{2},  -2 y^{3} z + x)
     .  

  2. Find the divergence of the vector field F that is defined by

     F(x, y, z)  =   (z^{3} x,   x^{3} y,   y^{3} z)  .  

    Response:

     {\partial}/{\partial x}(z^{3} x) + {\partial}/{\partial y}(x^{3} y) + {\partial}/{\partial z}(y^{3} z)  =   z^{3} + x^{3} + y^{3}  .  

  3. Find the double integral of the function f(x, y) = x y^{2} on the rectangle, having sides parallel to the coordinate axes, with diagonally opposite vertices at the points (-1, 1) and (5, 3).

    Response: The rectangle, say E, is described by the inequalities

     
    {
    -1 
    <=
    x
    <=
    5
    1
    <=
    y
    <=
    3
      .  

    Thus,

    INT[INT[_{E} x y^{2}  dA ]]  
     = 
    INT[_{-1}^{5} INT[_{1}^{3} x y^{2} dy ] dx ]
     
     = 
    INT[_{-1}^{5} x 
    (INT[_{1}^{3} y^{2} dy ])
     dx ]
     
     = 
    INT[_{-1}^{5} x .  
    [{y^{3}}/{3}]
    _{y = 1}^{y = 3} dx ]
     
     = 
    INT[_{-1}^{5} x . 
    (9 - {1}/{3})
     dx ]
     
     = 
    {26}/{3} INT[_{-1}^{5} x dx ]
     
     = 
    {26}/{3} 
    [{x^{2}}/{2}]
    _{x = -1}^{x = 5}
     
     = 
    {26}/{3} 
    ({5^{2}}/{2} - {(-1)^{2}}/{2})
     
     = 
    104  .

  4. Find the tangent plane at the point (3, -1, 2) to the surface

     x y^{2} z  =   6  .  

    Response: The chief task here is to find a vector normal to the tangent plane to be used as coefficient vector in the equation for the plane. Since the surface is a level set of the function

     f(x, y, z)  =  x y^{2} z  ,

    the gradient \nabla f of f at the given point must be normal to the tangent plane at that point (unless it vanishes).

    (\nabla f)(x, y, z)  
     = 
    (y^{2} z, 2 x y z, x y^{2})
    (\nabla f)(3, -1, 2)
     = 
    (2, -12, 3)

    Hence, the tangent plane has an equation of the form

     2 x - 12 y + 3 z  =  constant  . 

    Using the fact that (3, -1, 2) must satisfy this equation, one obtains the equation

     2 x - 12 y + 3 z  =  24  .  

  5. Find the arc length of the helix that is given parametrically by

     
    {
    x  =  4 sin t
    y  =  4 cos t
    z  =  3 t
     
    for 0 <= t <= pi/2.

    Response: This involves a straightforward application of the definition of the length of a parameterized path as the integral of the length of the derivative of a point on the path with respect to the the parameter:

    INT[_{C} ds ] 
     = 
    INT[_{C}  ||
    (dx, dy, dz)
    ||  ]
     
     = 
    INT[_{0}^{pi/2}   ||
    ({dx}/{dt}, {dy}/{dt}, {dz}/{dt})
    ||  dt ]
     
     = 
    INT[_{0}^{pi/2}   ||
    (4cos t, -{4sin t}, 3)
    ||  dt ]
     
     = 
    INT[_{0}^{pi/2}  SQRT{4^{2} 
    (cos^{2} t + sin^{2} t)
     + 3^{2}} dt ]
     
     = 
    INT[_{0}^{pi/2} 5 dt ]
     
     = 
    {5pi}/{2}  .

  6. Find the path integral of the vector field F that is defined by

     F(x, y, z)    =    (x - 2 z,  y + z ,  1 - y) 
    over the path given by
     R(t)    =    (t^{3} ,  t ,  t^{2}) 
    for 0 <= t <= 2.

    Response: This involves a straightforward application of the definition of the integral over a parameterized path of a vector field:

    INT[_{C} F dR ] 
     = 
    INT[_{0}^{2} F
    (R(t))
     . R'(t) dt ]
     
     = 
    INT[_{0}^{2} 
    (t^{3} - 2 t^{2},  t + t^{2},  1 - t)
      . 
    (  3 t^{2},    1,    2 t)
      dt ]
     
     = 
    INT[_{0}^{2} 
    ((3 t^{5} - 6 t^{4}) + (t^{2} + t) + (-2 t^{2} + 2 t))
       dt ]
     
     = 
    INT[_{0}^{2} (3 t^{5} - 6 t^{4} - t^{2} + 3 t)  dt ]
     
     = 
    [{t^{6}}/{2} - {6 t^{5}}/{5} - {t^{3}}/{3}  + {3 t^{2}}/{2}]
    _{t = 0}^{t = 2}
     
     = 
    32 - {192}/{5} - {8}/{3} + 6
     
     = 
    -{{46}/{15}} .

  7. Find the equation of the plane containing the point (-1, 3, 2) that is normal to the line defined by the two equations

     
    {
    3 x - 4 y + 2 z  
     = 
    7
    9 x - 5 y - 3 z
     = 
    2
     .   

    Response: A key fact for this problem is that a single linear equation in 3 variables is the equation of a plane in space, and the coefficient vector of such an equation is a (unique up to a scalar multiple) normal vector to that plane.

    Since a point in the required plane is given, one only needs to find a vector normal to the plane, which is the same thing as a vector parallel to the given line. The line is given as the intersection of two planes, and any normal to either plane must be normal to a vector parallel to their line of intersection. Thus a vector parallel to the line may be obtained as the ``cross product'' of normals to the two different planes, provided that vector is not 0 -- which happens when and only when the two planes are parallel and, therefore, do not determine a line of intersection.

    One finds:

     (3, -4, 2) \times (9, -5, -3)  =  (22, 27, 21)  .  

    Hence, the required plane has an equation of the form

     22 x + 27 y + 21 z  =  constant  , 

    and the constant is determined by the fact that the given point must satisfy the equation:

     22 . -1 + 27 . 3 + 21 . 2  =  -22 + 81 + 42  =  101  .  

    Hence, the required plane has the equation:

     22 x + 27 y + 21 z  =  101 .  

  8. Find the centroid of the solid cone

     x^{2} + y^{2} <=  z^{2}  ,      0 <= z <= 2  .  

    Response: The lateral boundary of the solid cone, given by x^{2} + y^{2} = z^{2}, is the surface obtained by rotating the line z = y in the plane x = 0 about the z-axis. Thus, for z >= 0 the section of the solid cone by the plane normal to the z-axis through the point (0, 0, z) is the disk of radius z with center (0, 0, z). The radius of this (inverted) cone's base, as well as its altitude, is 2, and, therefore its volume is

     {1}/{3} pi a^{2} h  =  {8pi}/{3}  .  

    By symmetry its centroid lies on the z-axis, and the only issue is what is its z-coordinate:

    \bar{z} 
     = 
    {1}/{volume} INT[INT[INT[ z  dV]]]
     
     = 
    {3}/{8pi}  INT[_{0}^{2} z dz INT[INT[_{x^{2} + y^{2} <= z^{2}}  dx dy]]]
     
     = 
    {3}/{8pi} INT[_{0}^{2} z  . 
    (Area of disk of radius  z)
     dz ]
     
     = 
    {3}/{8pi} INT[_{0}^{2} pi z^{3} dz ]
     
     = 
    {3}/{8} . 4
     
     = 
    {3}/{2}

    Hence, the centroid of the cone is the point (0, 0, 3pi/2).

  9. Find the surface integral of the vector field F over the sphere, oriented by its outer normal, of radius 3 with center at the origin when F is given by

     F(x, y, z)    =     (x^{3} ,   y^{3} ,   z^{3})  .  

    Response: The vector field is well-behaved everywhere, particularly in the ball surrounded by the given sphere. The divergence theorem may be applied.

     (div F)(x, y, z)  =  ({\partial}/{\partial x}, {\partial}/{\partial y}, {\partial}/{\partial z}). F  =   {\partial}/{\partial x}(x^{3}) + {\partial}/{\partial y}(y^{3}) + {\partial}/{\partial z}(z^{3})  =  3(x^{2} + y^{2} + z^{2})  .  

    Therefore,

     INT[INT[_{S} F . N d sigma ]]  =   INT[INT[INT[_{B} div F  d V ]]]  .  

    In polar coordinates, observing that d V = rho^{2} sin phi drho dphi dtheta and that div F = 3 rho^{2}, the triple integral with radius a = 3 becomes:

     3  INT[_{0}^{2pi}  dtheta INT[_{0}^{pisin phi dphi  INT[_{0}^{3} rho^{4}  drho ]]]  , 

    which evaluated becomes

     {12 pi}/{5} a^{5}  =  {2916 pi}/{5}  .  

  10. For a conservative vector field in the plane what can be said about its integral over the circle, traversed counterclockwise, of radius 2 with center at the point (3, 4) ? Explain your answer.

    Response: Because conservative in this context means that the vector field is the gradient of a scalar, one may use the formula

     INT[_{C} \nabla f]  =  f(B) - f(A) 

    where A and B are, respectively, the initial and final points of an oriented curve C. A trip around a circle, no matter where it begins, will end where it begins. Thus, A = B, and the integral of a vector field that is conservative in the plane around any circle must be zero.