r'(t) = (-2 sin t, 2 cos t , 1) |
||r'(t)|| = SQRT{5} |
L = ({Pi}/{2}) SQRT{5} |
F = \nabla f where f(x, y, z) = x^{2} + x y - y z + z |
INT[_{C} F] = f(r(2)) - f(r(0)) = f(r(2)) = 76 |
(- cos t , 1, e^{t} - 1) |
( sin t , 0, e^{t}) |
SQRT{2} |
{1}/{2} |
(0, 0, 1) |
This F is a curl. (See problem 2.) So Stoke's Theorem can be used to simplify and to replace the given surface integral by an ordinary double integral over the disk.