Dual Presentation with Math Using GELLMU

 $T_{\! E\! } X$ Users Group (TUG) in San Diego

William F. Hammond

Dept. of Mathematics & Statistics University at Albany Albany, New York 12222 (USA) http://www.albany.edu/~hammond/

July, 2007

1 The Idea

2 Example

The following identity may be regarded as a formulation of the Weierstrass product for the Gamma function.

$$\int_0^\infty t^x e^{-t} \frac{dt}{t} = \frac{1}{x} \prod_{k=1}^\infty \frac{\left(1 + \frac{1}{k}\right)^x}{\left(1 + \frac{x}{k}\right)}$$

Understanding the derivation of this identity is reasonable for a bright student of first year undergraduate calculus in the United States.

These are XHTML + MathML slides!

3 Computation of a Continued Fraction

$$\sqrt{10} = 3 + \frac{1}{\sqrt{10} - 3}$$

$$= 3 + \frac{1}{\sqrt{10} + 3}$$

$$= 3 + \frac{1}{6 + \frac{1}{\sqrt{10} - 3}}$$

$$= 3 + \frac{1}{6 + \frac{1}{\sqrt{10} + 3}}$$

$$= 3 + \frac{1}{6 + \frac{1}{6 + \frac{1}{6 + \frac{1}{2}}}}$$

4 Finding the tangent at a point

Curve: $y^2 = x^3 - 7x + 10$ **Point:** B = (1, -2)

Use implicit differentiation to find the slope:

$$2yy' = 3x^2 - 7$$

Evaluate when (x, y) = (1, -2): y' = 1 The tangent line at (1, -2) is parallel to any vector with slope 1, e.g., V = (1, 1).

Parametric equation:

$$p(t) = B + tV = (1, -2) + t(1, 1) = (1 + t, -2 + t)$$

5 Mozilla MathML Torture Test 13

$$\sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + x^{1 + x^1 + x^{1 + x^1 + x^1 + x^1} x^{1 + x^1}x^{1 + x^1} x^1} x^{1 + x^1$$

6 Mozilla MathML Torture Test 24

	$c_0 \\ c_1$	c_1	c_2	 c_n	
	c_1	c_2	c_3	 c_{n+1}	
det	c_2	c_3	c_4	 c_{n+2}	>0
	÷	÷	:	$c_n \\ c_{n+1} \\ c_{n+2} \\ \vdots$	
	c_n	c_{n+1}	c_{n+2}	 c_{2n}	

7 Madore's Challenge

In a letter to Godfrey Harold Hardy, S
<u>r</u>īnivāsa Rāmānujan Aiyankār asserts that

$$\frac{1}{1 + \frac{e^{-2\pi\sqrt{5}}}{1 + \frac{e^{-4\pi\sqrt{5}}}{1 + \frac{e^{-6\pi\sqrt{5}}}{\cdots}}}} = \left(\frac{\sqrt{5}}{1 + \sqrt[5]{5^{3/4}\left(\frac{\sqrt{5}-1}{2}\right)^{5/2} - 1}} - \frac{\sqrt{5}+1}{2}\right)e^{2\pi/\sqrt{5}}$$

8 Zeta function calculation

With the condition $Z_X(0) = 1$ the function $Z_X(t)$ is determined by its logarithmic derivative:

$$\frac{d}{dt} \log Z_X(t) = \sum_{x \text{ closed}} d(x) \frac{t^{d(x)-1}}{1-t^{d(x)}}$$
$$= \frac{1}{t} \sum_{r \ge 1} \sum_{\{x \text{ closed} \mid d(x) = r\}} r \frac{t^r}{1-t^r}$$
$$= \frac{1}{t} \sum_{r \ge 1} rc_r \frac{t^r}{1-t^r} = \frac{1}{t} \sum_{r \ge 1} rc_r \sum_{m \ge 1} t^{rm}$$
$$= \sum_{\nu \ge 1} N_{\nu} t^{\nu-1}$$

9 Dual Presentation

- One source
- Print and HTML outputs
- Print and XHTML + MATHML if math is involved

10 How to write for dual presentation (I)

Standard Answers

- 2. Write SGML or XML, then
 - (a) Translate to IAT_EX
 - (b) Translate to XHTML + MATHML

11 How to write for dual presentation (II)

Translating

Translating from \mathbb{I}_{EX} involves

- Carefully written $\[\]$ Source
- Customized tuning
- Hidden learning curve
 - Tough

12 How to write for dual presentation (III)

The GELLMU Approach

- Must first learn how
- $\bullet~{\rm Write}$ with ${\rm \ensuremath{\mathbb I}\xspace{-}} T_{\rm E} X$ -like syntax
- $\bullet\,$ Use the vocabulary of an SGML document type

Easier!

13 Conceptual Differences

- No pages
- No vertical lengths

- Relative horizontal lengths
- Content, yes.
- Style, no.
- $\bullet\,$ Fonts, no.

14 Markup Differences in GELLMU

- No declaration style markup (like {\centering ...})
- Braced zones provide logical grouping but not scope.
- \begin{display} ... \end{display} is the same as \display{ ... }
- No space allowed between a command and its arguments or between its successive arguments.
- The 33 non-alphanumeric but printable ASCII characters may all be referenced by names, e.g., \tld; for "~" is useful in URLs.
- Counters ride with labels.

15 Flow Chart

16 Style

Style choices are made in formatters (arrows at the right end of the chart)

17 Style vs. Content

Style	Content
<pre>\begin{center} \end{center}</pre>	
\it or \textit	∖emph
\bf or \textbf	\bold
\textsc	\abbr
\tt or \texttt	quostr or path

18 Commands Correspond to XML Elements

LaTeX	GELLMU source	GELLMU XML
\\	\\	 or <fcell></fcell>
&	&	<acell></acell>
∖'e	\ensure{e}	<acute>e</acute>
é	é or é	é
\frac23	$frac{2}{3}$	<frac><nm>2</nm><dn>3</dn></frac>
$\left\{ \right\}$	$balbr{ }$	<balbr> </balbr>
$\sum j \dots$	$\sum_j \dots $	<sum>_j</sum>

19 Write a Document

Source for a document:

```
\documenttype{article}
\title{A Simple Sum}
\begin{document}
```

This is a simple summation formula: $\[\sum_{k=1}^n k \sum: = \frac_{n(n+1)}_{2} \ \odots \]$ It may be proved easily using mathematical induction.

```
Mathematical induction is part of deductive, not inductive, logic.
```

 $\end{document}$

20 Build a Document

- 1. Save it as "smalldoc.glm".
- 2. At a command line enter

mmkg smalldoc .

- 3. Read the scroll.
- 4. Inspect the yield:

XHTML PDF	XML	Ŀ₽ŢĘX	HTML
-----------	-----	-------	------

21 Example Documents

- The User Guide (PDF) (Source)
- The Manual (PDF) (Source)
- A calculus handout (PDF) (Source)
- A port to GELLMU of Lamport's "sample2e.tex" (PDF) (Source)
- Port of an article from The New Journal of Mathematics

22 Acknowedgement

The XHTML + MATHML version of these slides uses W3C's *Slidy* by Dave Raggett, a JavaScript/CSS package for sizing and flow control of an HTML or XHTML slide show.

(The slides were generated in a non-standard fashion from GELLMU source.)