Generating Correct Mathematical Documents

William F. Hammond

September, 2001

1.  Mathematical Articles

Comment

What are our requirements for mathematical articles?

An example will indicate the scope of the task.

2.  A Segment of an Article

The gamma function may be defined in a suitable right-half plane by an integral, which essentially amounts to Fourier transform relative to the multiplicative group of postive real numbers of the reciprocal exponential function, and then extended to a meromorphic function in the complex plane with entire reciprocal. The following formula represents a variant of its Weierstrass product expansion: 0txetdtt=1xk=11+1kx1+xk. The product manifests simple poles at zero and each of the negative integers.

Comment

What are our goals for article preparation?

3.  Goals

From a Single Source:

  1. A typeset version of high quality for paper preprints.

  2. An online version for a web preprint.

  3. A typeset version of high quality meeting the requirements of a journal chosen after the time of writing.

4.  Goals for Online Versions

  1. catalogable.

  2. universally accessible.

  3. re-scalable and re-sizable.

  4. searchable for mathematical content.

  5. “clippable” for mathematical content.

Comment

How may an article containing a segment like that of the previous example be prepared?

5.  Mathematical Mainstream 1980-2000

Donald Knuth's TeX

LaTeX
Plain TeX
Other TeX Variants:
AMSTeX, ConTeXt, Omega, Texinfo

Comment

LaTeX is the most widely used TeX variant.

Texinfo is the TeX variant most suited to multiple presentations from a single source, but it is limited in regard to mathematics

Context by Hans Hagen is new and worth a look. It was the basis of an astounding graphics presentation at TUG 2001.

Context and latex both provide ways to write formatters for XML documents.

6.  How May One Provide Multiple Formattings?

Early Ideas:

  1. Intuitive Authoring Systems: the WYSIWYG Idea

  2. Write HTML and Translate From There.

  3. Write LaTeX and Translate From There.

Comment

WYSIWYG stands for “what you see is what you get”. But what one sees on a screen may not be the same as what one sees on paper. This issue is compounded for source documents that admit multiple formattings.

A standard answer to those who inquire about WYSIWYG is that WYSIWYG really means WYSIAYG: “what you see is all you get”.

7.  WYSIWYG: The Good News

8.  WYSIWYG: The Bad News

9.  WYSIWYG vs. Structured Markup

10.  Translating HTML

11.  Translating LaTeX

12.  XML

eXtensible Markup Language

13.  XML

14.  The GELLMU Project

15.  GELLMU

Generalized Extensible LaTeX-Like MarkUp

16.  Difference Between LaTeX Source and GELLMU Source

It is a small step from LaTeX source to GELLMU source.

17.  The Idea of LaTeX-Like MarkUp

18.  Examples of LaTeX-Like Commands

Example of a command taking no argument:
\latex
LaTeX
Example of a command taking one argument:
this is \emph{emphasized} text
this is emphasized text
Example of a command (for math) taking two arguments:
\[ \frac{a z + b}{cz + d} \]
az+bcz+d

19.  GELLMU Modes

  1. Basic

  2. Advanced

    1. Regular

    2. Other (less fully developed)

20.  Regular GELLMU: System Stages

  1. LaTeX-Like Source.

  2. Syntactic Translation to SGML.

  3. Translation of SGML to Enriched XML.

  4. Various Formattings of Enriched XML.

21.  Customizing

22.  The Syntatic Translator

source markup XML or SGML

\foo{ ... }<foo> . . . </foo>
\foo;<foo/>
\foo<foo>
\foo:</foo>
\foo[a="x" ...]<foo a="x" ...>

23.  Syntactic Differences from LaTeX

24.  Use of GELLMU in Basic Mode for XHTML

Write:

the WWW \a[href="http://www.w3.org/"
]{Consortium} site

for generating the XML:

the WWW <a href="http://www.w3.org/"
>Consortium</a> site

to produce:

the WWW Consortium site

25.  \newcommand with XHTML

Definitions
\newcommand{\emph}[1]{\em{#1}}
\newcommand{\w3ref}[2][]{%
\a[href="http://www.w3.org/#1"]{#2}}
Invocations
Using GELLMU's \emph{newcommand}
one can reduce the markup required
for an anchor to \w3ref{W3C}'s
\w3ref{Math/}{MathML} site.
Rendering: Using GELLMU's newcommand one can reduce the markup required for an anchor to W3C's MathML site.

26.  Why is GELLMU's article “Didactic”?

27.  The Gamma Function: Its Weierstrass Product

0txetdtt=1xk=11+1kx1+xk

28.  Markup for the Gamma Identity

Regular GELLMU source for the identity:

\[ \int_{0}^{\infty}
      t^x e^{-t} \frac{d t}{t}
   \int:
   = \frac{1}{x}
   \prod_{k=1}^{\infty}
     \frac{
      \bal{1 + \frac{1}{k}}^x
     }{
      \bal{1 + \frac{x}{k}}
   } \prod: \]

29.  Gamma: Derived XML Markup

<displaymath>
<int>
 <msub>0</msub>
 <msup><infty/></msup>
 t<pow>x</pow> e<pow><minus/>t</pow>
 <frac>
  <numr>d t</numr>
  <denm>t</denm>
 </frac>
</int>
<equals/>
<frac><numr>1</numr><denm>x</denm></frac>
<prod>
 <msub>k<equals/>1</msub>
 <msup><infty/></msup>
 <frac>
  <numr>
   <bal>1<plus/>
    <frac>
     <numr>1</numr>
     <denm>k</denm>
    </frac>
   </bal><pow>x</pow>
  </numr>
  <denm>
   <bal>1 <plus/>
    <frac>
     <numr>x</numr>
     <denm>k</denm>
    </frac>
   </bal>
  </denm>
 </frac>
</prod>
</displaymath>

30.  Gamma: in MathML

(not by automatic translation)

<math
 xmlns="http://www.w3.org/1998/Math/MathML"
 class="display" mode="display">
<mrow>
 <mrow>
  <msubsup>
   <mo>&Integral;</mo>
   <mrow><mn>0</mn></mrow>
   <mi>&infin;</mi>
  </msubsup>
  <mrow>
   <msup>
    <mrow><mi>t</mi></mrow>
    <mrow><mi>x</mi></mrow>
   </msup>
   <mo> </mo>
  <msup>
   <mrow><mi>e</mi></mrow>
   <mrow><mi>-t</mi></mrow>
  </msup>
  <mo> </mo>
   <mfrac>
    <mrow><mi>dt</mi></mrow>
    <mi>t</mi>
   </mfrac>
  </mrow>
 </mrow>
 <mo>=</mo>
 <mrow>
  <mfrac>
   <mrow><mn>1</mn></mrow>
   <mi>x</mi>
  </mfrac>
 <mo> </mo>
  <msubsup>
   <mo>&Product;</mo>
   <mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow>
   <mi>&infin;</mi>
  </msubsup>
  <mrow>
   <mrow>
    <mfrac>
     <mrow>
      <msup>
       <mrow><mfenced>
        <mrow>
         <mn>1</mn><mo>+</mo>
         <mfrac><mn>1</mn><mi>k</mi></mfrac>
        </mrow>
       </mfenced></mrow>
       <mrow><mi>x</mi></mrow>
      </msup>
     </mrow>
     <mrow><mfenced>
      <mrow>
       <mn>1</mn><mo>+</mo>
       <mfrac><mi>x</mi><mi>k</mi></mfrac>
      </mrow>
     </mfenced></mrow>
    </mfrac>
   </mrow>
  </mrow>
 </mrow>
</mrow>
</math>

31.  Viewing MathML

Viewing support for MathML in web pages is not yet widely available. The above item can be rendered by:

32.  Generating MathML from article

33.  Reliable Generation of MathML

Reliable translation will require:

A substantial non-XML, but XML-aware, parsing of all math zones in a GELLMU source document.
Occasional math parsing hints from authors in their markup.
Desirable, sometimes required:
  1. Source markup labeling of math symbols.

  2. Source markup typing of math symbols.

34.  MathML Generation Issues

35.  Two Final Notes