Algebra Preliminary Exam

January 1997

- 1. Prove that if A is an $n \times n$ matrix with coefficients in a field, then A is similar to a matrix of the form $\begin{pmatrix} A_1 & 0 \\ & A_2 \\ & &$
- 2. Prove that $(p-1)! \equiv -1 \pmod{p}$ for p an odd prime.
- 3. If G is any group and H is a subgroup of G with G: H = n, show that there exists a normal subgroup K of G such that $K \subseteq H$ and $G: K \leq n!$
- 4. Determine the structure of the Galois group G of the splitting field M over the rational numbers Q of the polynomial $f(x) = x^5 - 2$. How many Sylow 2-subgroups does G have? Give the fixed subfields of M of each Sylow 2-subgroup. Do the same thing for the Sylow 5-subgroups. Which of these subfields are normal field extensions of Q?
- 5. Let K be a normal, separable extension field of F, and $p(x) \in F[x]$ be an irreducible polynomial. If in $K[x] p(x) = p_1(x) \cdots p_r(x)$ where $p_i(x)$ are irreducible polynomials in $K[x], i = 1 \dots r$, prove that $p_1(x), \dots, p_r(x)$ all have the same degree.
- 6. Let R be an integral domain. State and prove the universal mapping property for the embedding of R into its field of fractions.
- 7. Let R be a ring with unit, A, C right R-modules, B, D left R-modules, f : A → C a right R-module homomorphism, g : B → D a left R-module homomorphism. Let h : A ⊗_R B → C ⊗_R D be defined by h(a ⊗ b) = f(a) ⊗ g(b). If f and g are monomorphisms, is h necessarily a monomorphism? Why?

8. Let p be a prime number and \mathbf{Z}_p be the completion of \mathbf{Z} at the prime ideal $p\mathbf{Z}$. Prove that there exists a map

$$\chi: \mathbf{F}_p \to \mathbf{Z}_p$$

with the following properties:

(a) If $\pi: \mathbf{Z}_p \to \mathbf{F}_p$ is the canonical map, then

 $\boldsymbol{\pi}\cdot\boldsymbol{\chi}$ is the identity on \mathbf{F}_p

(b) χ is multiplicative: that is, $\chi(ab) = \chi(a) \ \chi(b)$ for all a, b in \mathbf{F}_p .