Algebra Preliminary Exam

January 20, 1995

1. Prove or disprove the following assertion:

Every real symmetric matrix has a unique real symmetric cube root.

- 2. Let Z[x] be the ring of polynomials in one variable with coefficients in the ring Z of integers. Let I be the ideal of all polynomials f(x) in Z[x] such that f(0) = 0, and let J be the ideal of all polynomials f(x) in Z[x] such that f(0) is an even integer. Show that:
 - a) I is a prime ideal.
 - b) J is a maximal ideal.
 - c) I is a principal ideal.
 - d) J is **not** a principal ideal.
- 3. Let E be the splitting field over the field F of the polynomial $t^{15} 1$. Determine the extension degree [E:F] when F is:
 - (a) the field \mathbf{R} of real numbers.
 - (b) the field \mathbf{F}_2 of integers mod 2.
 - (c) the field \mathbf{F}_{31} of integers mod 31.
 - (d) the field \mathbf{Q} of rational numbers. **Hint**: The splitting fields of $t^5 1$ and of $t^3 1$ are subfields. Show that the intersection of these two subfields is \mathbf{Q} .
- 4. Let E be a (finite) Galois extension field of F with Galois group G; let K be an intermediate field and H the subgroup of G that fixes K. Show that the subgroup of G consisting of all σ in G for which σ(K) = K is the normalizer of H in G.
- 5. Prove directly, without quoting the structure theorem for finitely generated modules, that in a principal ideal domain the matrices $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ and $\begin{bmatrix} gcd(a,b) & 0 \\ 0 & lcm(a,b) \end{bmatrix}$ are row-and-column equivalent.

- 6. Suppose that for a certain integer n > 1, every group of order n is cyclic. Prove that n is relatively prime to $\phi(n)$.
- 7. Let ℓ denote "length" (in the sense of the Jordan-Holder theorem). Complete the following statement concerning the nontrivial abelian groups A and B ,and then prove the assertion:

$$\ell(A) = \ell(B)$$
 if and only if ...

- 8. Let R be a commutative ring. Let M be a R-module. Consider the functors $\otimes M$, Hom(M, -), Hom(-, M) on the category of R-modules.
 - (a) List the exactness properties of each of these three functors in general and prove in detail what you have said about one of them.
 - (b) What more can you say if M is R-free?