Department of Mathematics and Statistics

Preliminary Ph.D. Examination in Algebra

January 18, 1994

- 1. (a) Let G be a non-abelian group of order 8. Prove that there exists a cyclic subgroup H of order 4 in G. Determine whether this subgroup H is normal in G.
 - (b) Give an example of a group of order 8 which does not admit any cyclic subgroup of order 4.
- 2. Let K be a finite field of cardinality q.
 - (a) Show that K has characteristic p for some prime p.
 - (b) Show that the group of ring automorphisms $\operatorname{Aut}(K)$ is cyclic of order $\log_p q$.
- 3. Let A_4 denote the group of "even" permutations of a set of cardinality 4.
 - (a) Determine the 2-Sylow subgroup(s) of A_4 .
 - (b) Let T be a 3-Sylow subgroup of A_4 . Show that T is not normal in A_4 .
 - (c) Show that any group of order 12 which does not have a normal 3-Sylow subgroup is isomorphic to A_4 .
- 4. Let \mathbf{Q} denote the field of rational numbers. Let K denote the field obtained by adjoining all the complex third roots of 2 to \mathbf{Q} .
 - (a) Determine the degree $[K : \mathbf{Q}]$.
 - (b) Determine the Galois group of the extension K/\mathbf{Q} .
 - (c) Determine all the subfields of K.

5. Let A be a ring and $0 \to K \to F \xrightarrow{\pi} M \to 0$, $0 \to K' \to F' \xrightarrow{\pi'} M \to 0$ be two short exact sequences of left A-modules, where F and F' are free A-modules. Show that $F \oplus K' \cong F' \oplus K$ as left A-modules as follows:

Let $Y = \{(f, f') \in F \oplus F' | \pi(f) = \pi'(f') \}.$

Let $g: Y \to F$ by g(f, f') = f and let $g': Y \to F'$ by g'(f, f') = f'.

Show that

- (i) g and g' are surjective.
- (ii) $Y \cong F \oplus \ker(g) \cong F' \oplus \ker(g')$.
- (iii) $\ker(g) \cong K'$ and $\ker(g') \cong K$.

Hence $F \oplus K' \cong F' \oplus K$.

- 6. Let R be a commutative ring.
 - (a) Show that P is a projective R-module iff $\operatorname{Hom}(P, -)$ when applied to a short exact sequence of R-modules is exact.
 - (b) Prove that every free module is projective.
 - (c) Give an example of a projective which is not free.
 - (d) Classify all projective modules over principal ideal domains.
- 7. (a) Show that every commutative ring with identity has a maximal ideal.
 - (b) Give an example of a ring with a unique maximal nonzero ideal.
 - (c) Give an example of a ring with a finite (> 1) number of maximal ideals.
 - (d) Give an example of a ring with an infinite number of maximal ideals.
- 8. Let $M_n(F)$ denote the ring of n-by-n matrices with entries in a field F.

Let E(i, j) denote the matrix with (i, j)-entry equal to 1 and all other entries equal to 0. Let A be a matrix in $M_n(F)$.

- (a) Describe the result of multiplication of A by E(i, j) on the left and on the right respectively.
- (b) Show that $M_n(F)$ has no non-trivial proper two-sided ideals.