Preliminary Examination in Algebra August 2009

- (1) Determine the number of *p*-Sylow subgroups in the symmetric group S_p , where *p* is a prime.
- (2) Find all similarity classes of matrices in $M_7(\mathbb{R})$ with the minimal polynomial $(x-1)(x^2+1)^2$. For each class write its rational canonical form.
- (3) Show that there is no simple group of order pqr, where p < q < r are prime.
- (4) Show that $A \in M_n(k)$, k is a field, is similar to A^T (the transpose of A).
- (5) Let $B \in M_n(\mathbb{Q})$ such that $B^5 = 1$ and no eigenvalue of B is equal to 1. Show that n is divisible by 4.
- (6) Let F be a field of characteristic zero. Suppose that K/F is finite Galois extension with Galois group G. Prove that if $a \in K$ and $g(a) a \in F$ for all $g \in G$, then $a \in F$.
- (7) Let K be the splitting field over \mathbb{Q} , in \mathbb{C} , of $x^4 2$. Determine the Galois group $Gal(K/\mathbb{Q})$ and the subelds of K. For each subeld F of K, give eld generators over \mathbb{Q} .