The University at Albany Department of Mathematics and Statistics Ph. D. Program Preliminary Examination in Algebra August 2008

Problem 1.

- a. State the Jordan–Holder Theorem.
- b. Give the definition of a solvable group.
- c. Give an example of a non-solvable group.

Problem 2. Let p, q be two odd prime numbers with p < q. Let n = pq. Show that every group of order n is cyclic if and only if p does not divide q - 1.

Problem 3. Let S_3 denote the symmetric group of order 6.

- a. Determine the group of inner automorphisms of S_3 .
- b. Show that every automorphism of S_3 is inner.

Problem 4. Prove that there are at least 4 isomorphism classes of groups of order 8.

Problem 5. Find all real 3×3 matrices A, up to similarity, with $A^3 = I$.

Problem 6.

- a. Let R be a ring. Define a projective R-module.
- b. In case $R = \mathbb{F}$ is a field, give an example of a finitely generated Rmodule that is not projective or show that such an example does not
 exist.
- c. In case $R = \mathbb{Z}$, the ring of integers, give an example of a finitely generated R-module that is not projective or show that such an example does not exist.

Problem 7. Let \mathbb{K} be a field. Let \mathbb{K}^x denote the multiplicative group of units of \mathbb{K} .

- a. Show that a finite subgroup G of \mathbb{K}^x is cyclic.
- b. Evaluate the following sum in \mathbb{K} :

$$\sum_{g \in G} g$$

Problem 8. Let \mathbb{Q} denote the field of rational numbers. Let \mathbb{K} denote the field obtained by adjoining all the complex third roots of 2 to \mathbb{Q} .

- a. Determine the Galois group of the extension \mathbb{K} over \mathbb{Q} .
- b. Can a line segment with length equal to $\sqrt[3]{2}$ be constructed (given unit length) in a finite number of steps using straight edge and compass? Explain.