Ph.D. Preliminary Examination in Algebra

August 31, 2006

- 1. Show that $\mathbb{Z}_{mn} \cong \mathbb{Z}_m \times \mathbb{Z}_n$, if and only if m and n are relatively prime.
- 2. Let p be a prime number. How many Sylow p-subgroups does S_p have?
- 3. Show that there is no simple group of order 160.
- 4. Show that $\mathbb{Z}[\sqrt{3}]$ is a UFD.
- 5. Let K be a finite field.
 - (a) Show that there exists a prime number p so that K contains a subfield F isomorphic to the field \mathbb{F}_p of p elements.
 - (b) Show that there exists a polynomial q(x) with coefficients in F such that K is isomorphic (as rings) to the ring F[x]/(q(x)).
 - (c) Show that K : F is Galois.
- 6. (a) Describe the Galois group $\operatorname{Gal}(\mathbb{Q}(\zeta_5)/\mathbb{Q})$ and its action on $\mathbb{Q}(\zeta_5)$, where $\zeta_5 = e^{2\pi i/5}$.
 - (b) Determine the minimal polynomial of $cos(2\pi/5)$ and show that $cos(2\pi/5) = \frac{-1+\sqrt{5}}{4}$.
 - (c) Find the tower of subfields of $\mathbb{Q}(\zeta_5)$ and express them as fixed subfields of subgroups of $\operatorname{Gal}(\mathbb{Q}(\zeta_5)/\mathbb{Q})$.
- 7. Prove that a left module M over a ring with identity R is simple (i.e., $M \neq 0$ and M has no proper submodules) if and only if M is isomorphic to R/I for some maximal left ideal I.
- 8. If A is an $n \times n$ matrix with entries in a field k, show that A is similar to its transpose A^t .
- 9. (a) Define projective module.
 - (b) Define injective module.
 - (c) Prove or disprove: \mathbb{Z} is an injective \mathbb{Z} -module.
 - (d) Show that \mathbb{Q} is not a projective \mathbb{Z} -module.