Ph.D. Preliminary Examination in Algebra

June 4, 1999

1. Let A be an $n \times n$ matrix with entries in the field \mathbf{C} of complex numbers that satisfies the relation $A^{2}=A$. Show that A is similar to a diagonal matrix which has only 0 's and 1's along the diagonal.
2. Furnish examples of the following:
(a) A finite group that is solvable but not abelian.
(b) A finite group whose center is a proper subgroup of order 2.
(c) A nested sequence of finite groups G, H, K with H a normal subgroup of G and K a normal subgroup of H such that K is not a normal subgroup of G.
3. Let p be the polynomial $p(t)=t^{5}+t^{2}+1$ regarded as an element of the ring $A=\mathbf{F}_{2}[t]$ of polynomials with coefficients in the field \mathbf{F}_{2} of two elements. Show that p is irreducible, and then find a polynomial of degree at most 4 with the property that its residue class modulo the ideal $p A$ generates the entire multiplicative group of units in the quotient ring $A / p A$.
4. Let G be a finite group of order N, and let n be a positive integer that divides N. Do one of the following:
(a) Prove that if G is abelian, then G contains a subgroup of order n.
(b) Find an example of G, N, n as above where G has no subgroup of order n.
5. Show that every group of order 30 contains a normal cyclic subgroup of order 15 .
6. Let F be the field $\mathbf{Q}(i)$ where $i=\sqrt{-1} \in \mathbf{C}$, and let E be the splitting field over F of the polynomial $f(t)=t^{4}-5$. Find:
(a) the extension degree $[E: F]$.
(b) the group $\operatorname{Aut}_{F}(E)$ of all automorphisms of E that fix F.
7. Let \mathbf{F}_{2} be the field of 2 elements, and let R be the commutative ring

$$
R=\mathbf{F}_{2}[t] / t^{3} \mathbf{F}_{2}[t]
$$

(a) How many elements does R contain?
(b) What is the characteristic of R ?
(c) Find all ring homomorphisms $R \rightarrow R$.
8. Let a, b, c, d be elements of a field F, let A, B, C, D be $n \times n$ matrices over F, and let

$$
m=\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right) \quad \text { and } \quad M=\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right) .
$$

If $\lambda: F^{2} \rightarrow F^{2}$ and $\Lambda: F^{2 n} \rightarrow F^{2 n}$ denote the linear endomorphisms corresponding (relative to standard coordinates) to m and M, respectively, then to what linear endomorphism that may be constructed from λ and Λ may one relate the $4 n \times 4 n$ (Kronecker product) matrix

$$
\left(\begin{array}{cccc}
a A & b A & a B & b B \\
c A & d A & c B & d B \\
a C & b C & a D & b D \\
c C & d C & c D & d D
\end{array}\right) ?
$$

Explain your answer.

