Blaschke Sets for Bergman Spaces

by Boris Korenblum

ABSTRACT.: We characterize subsets S of the open unit disk D such that every zero

sequence for a Bergman space AP, p > 0, with elements in S is Blaschke.

1. Introduction.

The following definition is an extension of the notion of a Blaschke set introduced by
Krzysztof Bogdan [B].

DEFINITION: We call S C D a Blaschke set for a class X of analytic functions on D =

{zeC:|z| < 1} if

(i) whenever 0 # f € X, and {z,}, are the zeros of f (counting multiplicities), with
zn € S, the Blaschke condition holds:

D 1=zl < oo (1)

n

(ii) whenever Z = {z,}, is a Blaschke sequence (i.e. (1) holds), with z, € S, there is an

f € X whose zero sequence is Z.

REMARK: If X is made up of functions of bounded Nevanlinna characteric then this defi-
nition reduces to (ii). If H> C X, it reduces to (i).

EXAMPLES:
1. Every subset of D is a Blaschke set for H?, 0 < p < o0.
2. For analytic Lipschitz classes Lipo(D),a > 0, as well as for A = {f : f® ¢
H® ¥n > 0}, Blaschke sets are characterized by

27
/ log dist(e”, S)dt > —o0 (2)
0

where dist denotes the Euclidean distance. Note that for Lip, (D) and A the zero
sequences Z are characterized by (1) and (2), with S replaced by Z.

3. The Blaschke sets S for the class D of analytic functions with finite Dirichlet integral
are characterized by (2) (see [B]). Note that D-zero sequences cannot be described

this way because there are f € D whose zeros come arbitrarily close to every point of
0D (see [C] and [SS]).
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The purpose of this paper is to obtain a description of the Blaschke sets for Bergman
spaces AP(p > 0) and growth spaces A~“(a > 0). Recall that AP consists of functions f

analytic on D such that

dxd
1= [ 1= < oo

A~ consists of analytic functions f with

[fll—a = sup{(1 = [z[)*[f(2)| : z € D} < o0 ;

We also consider the space A7 = U A% = U AP,
a>0 p>0

We establish the following
THEOREM. A set S C D is a Blaschke set for any of the spaces AP, A—%, A= if and only
if (2) holds.

To prove this theorem we first reduce condition (2) to a form involving a collection
of disjoint “tents” tightly surrounding S. The sufficiency of (2) then follows from the fact
that “Stolz stars” Sp are A~°°-Blaschke sets if the entropy &(F’) is finite (see (3) and
[HKZ]). To prove the necessity of (2) we use some density concepts first introduced in [K1]
and later refined in [S] and [HKZ].

ACKNOWLEDGEMENT: The suthor thanks Stefan Richter and Carl Sundberg for useful

discussions. Special thanks are due to Carl Sundberg for bringing K. Bogdan’s work [B]

to the author’s attention.

2. An equivalent form of (2).
We assume that S contains a disk centered at 0 of radius 1/ V2.
We need some terminology.
A tent is an open subset h of D bounded by an arc I C 9D of length less than 7/2

and two straight lines through the endpoints of I forming with I an angle of w/4. The
closed arc I will be called the base of the tent h = h;. A tent h is said to support S if
hNS =¢but hNS # ¢. A finite or countable collection of tents {h,}, is a belt if h,
are pairwise disjoint and UE” D 0D. A collection of tents {hy,}, is an S-belt if h,, are

pairwise disjoint, S-supporting, and UE" D OD\S. Note that an S-belt does not have to
n

be a belt. If S is such that 9D\S # ¢, S-belts exist: to obtain one we start at an arbitrary
point (; € 9D\S and, moving counterclockwise, consecutively find points (i, (s ... such
that the arcs between them are the bases of S-supporting tents; then we proceed similarly

from (p in the opposite direction. We thus obtain a system of tents whose bases cover a
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component of G = 0D\S. Continuing this process for all the components we obtain an
S-belt.
An elementary computation shows that if h = h; is a tent supporting S then
1 1
~I1]tog 5 — ell] < [ 1o dist(¢. )¢ < ~|11og 5 + el
I

where ¢ is a numerical constant. We thus obtain

LEMMA 1. Let S be a subset of D such that 0D\S # ¢. Let {hj,}, be an S-belt. Then
(2) holds if and only if
(A) the set Fy = S N OD has zero Lebesgue length;

(B)

2
Z k(I,) < oo where k(I) = |I|log %‘e .
(k(I) is called the k length of I).
Note that (A) and (B) together are equivalent to
2T
R(F) = lo d¢| < oo 3
(F) = [ tog 2l Q

where F' = Fy UZ and = consists of the endpoints of those bases such that I,, C G; d
denotes the angular distance.
The quantity #(F) is defined for all sets F' C 0D and is called the entropy of F.

Closed sets with finite entropy are called Beurling-Carleson sets.

3. Sufficiency of (3).

Let Z; D = consist of all endpoints of the bases I,, (including those that are in Fp).

Pick an increasing sequence F} C Fy C ... of finite subsets of Z; such that UF“ = =1.

n

Then (3) implies
lim A(F,) = R&(F) .

n—o0
Each F,, determines a belt whose tents are based on complementary arcs of F,,. Let H,
be the union of these tents. (Note that some of these tents are not S-supporting because
they contain ponts from S). The complement D\ H,, = 7,, is a “Stolz Star”, i.e. the union
of Stolz angles with vertices in F;, and apertures of 7/2.

Since R(F},) are bounded, it follows that, whenever 0 # f € A=, the Blaschke sums
for those zeros of f lying in 7, are bounded (see [HKZ], p. 118, Theorem 4.25). We have
Z 7o, O S and 71 C 75 C ..., which implies that the Blaschke sum for the zeros of f lying

n
in S is finite.



4. Necessity of (3).

Suppose now that £(F') = co. Given an arbitrary fixed p > 0 we are going to construct

a sequence Z = {zp tn, 2n € 5, such that Z is an AP-zero sequence but » (1 — |z,]) = oo.
In addition to the standard tools of A~°°-theory (density notions, premeasures, etc.) we
will use some technical lemmas whose proofs are deferred to section 5.

Recall that F = Fy UZ where Fy = SN 0D and Z is a finite or countable set lying in
G = 0D\ Fy. The cluster points (if any) of = are in Fp.

We consider separately two cases depending on whether #(Fp) is infinite or finite.
CASE 1: /(Fj) = co. By Lemma 2, s.5, there is a sequence {(, }7° of distinct points in Fj

such that the corresponding arcs {J, }7° between (, and (,11 are pairwise disjoint, cover
oD, i.e. ij = 0D, and #({(,}) = oo, which is equivalent to

> > 2me
v=1 v=1 v

(Note that lim ¢, = (7). Construct a premeasure (see [K1], [K2], [HKZ]) du = p|d¢| — do

whose positive part has the density

2
C, {Cw CV+1})

p(Q) =log 5 (e, vz,

and the negative singular part —do puts on every point ¢, a Dirac mass equal to —k(J,).
Although both positive and negative parts are infinite on 0D, du is k-bounded above,
which means that there is a constant ¢ > 0 such that for all arcs I C 0D

2

u(I) < clI|log 7 .

1]

This enables us to consider a zero-free analytic function

(+z
op C— 2

fe(z) = exp{e dp(C)}
which is in AP (or A~%) provided that € > 0 is sufficiently small, and p (or «) are arbitary
but fixed positive numbers.

Now we use Lemma 3, s.5, to reduce all the singular masses at (, by a factor 1/2
and compensate for that by extra zeros of high multiplicity at z, € S. We can ensure
that the resulting function ® is in AP. The zeros z, of ¢ (counting multiplicities) form a

non-Blaschke sequence of points from S (see Lemma 3 for details).
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CASE 2: i(Fp) < oo. Then we must have #(Z) = oo. Recall that = includes all the
endpoint of the base arcs of the S-belt that are in G = D\S. Let {.J,}, be the sequence
of these arcs arranged by decreasing lengths. Then &(Fp) < oo together with #(Z) = oo
yield

> k() ZIJ\log|I|
v=1

It is always possible to find a decreasing sequence 1 > A\; > Ao > ... — 0 such that

Z)\KJ =

Every J, is the base of a tent h; that supports S; therefore there is at least one

common point, say w,,, in S, h s, and D. Take every w, and repeat it [)‘ '$|(u‘)] I)] times. Let

the resulting sequence be Z = {zj }x.

CLAIM: Z is a zero sequence for every AP, p > 0. To prove the claim we employ the notion
of upper asymptotic k-density of a sequence in D. There are several equivalent definitions
of this density. We will use the definition based on radial stars (see [HKZ]):

For an arbitrary finite set M C 9D let rj; denote the union of radii from 0 to points

in M. If A= {ay}r is any sequence of points in D, we form the partial Blaschke sum for

A and rq:

B(A,rar) = {1—ax|:ax € rar}

K

and define
Dt (A) = limsup ———/ ( M) (4)
where lim sup is taken over all finite M C 0D.
The following result, although short of a full characterization of AP-zero sets, is sharp

enough for our purposes.

PROPOSITION. (See [HKZ], p.130, Theorem 4.37). Let A = {ay}r be a sequence of points
in D and DT (A) be the upper asymptotic k-density of A. If DY(A) < ]l? then A is an

AP-zero sequence. If DT (A) > % then A is not an AP-zero sequence.

REMARK: This is a sharper version, due to Kristian Seip [S], of a simiilar but weaker result
from [K1].
Now we can prove the claim by showing that DT (Z) = 0. Let Q = {¢, = ﬁ;’—i‘}y

Every arc J, contains exactly one point from (), namely ¢,. Obviously, for computing

5



D (Z) we can employ only those M that are finite subsets of Q. For such M we have
B(Z,ra) <Y AME(J) g0 € M}

and
ROM) 2 S {w(1) < a0 € M)

(see Lemma 4, s.5). Therefore

% <S k(L) ar € MY S {R() g0 € M}

It is convenient to use the following notations:

K(M) = {x(J,):q € M},

KA(M) =) {\n(,) g, € M}

Let {M,}, be a sequence of subsets of @) such that #(M,,) — oo. Then we have
B(Z K\ (M,
(A 7TMn) < )\( ) . (5)

Suppose that K (M, ) = O(1)(n — oo). Then obviously the left-hand side of (5) tends
to 0. Also, if K(M,) — oo, then the right-hand (and, with it, the left-hand) side of
(5) tends to 0 because A, | 0. Therefore every sequence {M,}, M, C Q, ~(M,) — oo,

contains a subsequence {M,, } = {M}, n; < ng..., such that
B(Z,ry
Jim (—f”k) =0.
k—0  R(M])

which implies DT (Z) = 0. Thus we have obtained a non-Blaschke AP-zero sequence {zy}
whose elements are in S. Using how Lemma 5, s.5, we can replace z; by nearby points
Zr from S so that the new sequence {Zx} is still an AP-zero sequence and non-Blaschke.

This completes the proof of the Theorem.

5. Technical Lemma.

We give below the statement of the technical lemmas we used in proving the Theorem,

together with a brief outline of their proofs.

DEFINITION: A sequence {(, }° of distinct points in D is called T-monotone if the open
arcs I,, between (, and (,+; are pairwise disjoint and UT = 0D. Note that it follows

n
from this definition that lim (., = (3.



LEMMA 2. Every closed set F' C 0D of infinite entropy contains a T-monotone sequence
{¢w}n C F of infinite entropy.

Proor: We have
27

R(F) :/aDlogd(C;F)ldq =00 .

(d denotes the angular distance). By the Heine-Borel lemma there is a point (y € F such

that every open arc J containing (p has the property

2
J s e et ==

Now we can find a nested system of open arcs such that J, O J,41, ﬂ[n = {Co},

n

and a finite set My, C (J,\Jny1) N F such that

2T
log — " __|d¢|>1, n>1.
/Jn\jn+1 d(C) Mn)l |

Taking the union F = U M, (or a suitable subset of F) and rearranging it in a sequence

n
will prove the Lemma.

LEMMA 3. Let f € AP(p > 0) have an “atomic singularity” at z =1, i.e.

limsup(1 —r)log|f(r)| = —-2m < 0.

r—1—

If mqy < m then
(i) F(z) = eml}t_zf(z) is in AP;

(ii) whenever 0 # a,, € D and lim «, = 1, the function

n—oo

"% ‘an|)N"F(z), where N,, = | e

1—0nz o 1 — |ou,|

Jan(2) = (

] )

tends to f in the metric of AP.
PROOF: (i) For any r € (0,00) the equation

1— |2
1=z

=r

defines a circle C. internally tangent to 0D at the point 1. Such circles are called orocycles.

If fis in AP and has atomic singularity m at 1, then the function

14z

9(z) = "= f(2)
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may not be in A?; however, the integral

1

L) = 5= [ 1= cPlatolrIac

is finite and decreasing on (0,7), and

/ F(2) P22 / T e L) dr < o
D 0

™

This implies

/ |F'(2)P dady :/ e~ M=mIT (P dr < oo .
D

T 0
(ii) then follows by the dominated convergence theorem

LEMMA 4. If I C 0D is an arc, M is an arbitrary subset of 0D, and if at least one point
from M is in I, then

me

2m 2

PROOF: The minimum of the integral on the left for a given arc I is attained when M is
a one-point set, and this point is one of the endpoints of I. A direct computation yields

the required result.

LEMMA 5. Let f € AP have a zero at some point a € D. For arbitrary o € D define

B, (Z)
fa(Z)— Ba(Z)f(Z)
where B is a Blaschke factor:
z—« zZ—a
Ba(z)— 1—az a(z)— 1—az

Then f,, tends to f in the metric of AP as a — a.

The proof is immediate and left to the reader.
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