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1 Outline

Fri., May. 5:

A 1949 paper by André Weil gave evidence for the existence of “topological cohomology”
in algebraic geometry linked to the notion of zeta function for a non-singular projective
algebraic variety defined over a finite field.

Let X be a scheme of finite type over Z. For each element x ∈ X the residue field at x is
the fraction field of an algebra of finite type over Z. Thus, the residue field at a closed
element x is a field that is an algebra of finite type over Z, i.e., a finite field. One defines
the zeta function of X by

ζX(s) =
∏

x closed in X

1
1−N(x)−s

where N(x) = |κ(x)| is the number of elements of the residue field of X at x. (Ignore
questions of convergence for now.) When X = SpecZ, ζX(s) is Riemann’s zeta function.
When X is a scheme of finite type over Fq, each residue field at a closed element is a finite
extension field of Fq, and, therefore, N(x) = qd(x) where d(x) is the extension degree.
With t = q−s one writes

ζX(s) = ZX(t) =
∏

x closed

1
1− td(x)

With the condition ZX(0) = 1 the Z form of the zeta function is determined by its
logarithmic derivative

d

dt
log ZX(t) =

∑
x closed

d(x)
td(x)−1

1− td(x)

=
1
t

∑
r≥1

∑
{x closed | d(x) = r}

r
tr

1− tr

=
1
t

∑
r≥1

rcr
tr

1− tr

=
1
t

∑
r≥1

rcr

∑
s≥1

trs

=
1
t

∑
ν≥1

∑
r divides ν

rcrt
ν

=
∑
ν≥1

Nνtν−1

where cr denotes the number of closed elements in X with d(x) = r and Nν denotes the
number of points of X with values in the degree ν extension of Fq.

1URI: http://math.albany.edu/math/pers/hammond/course/mat825s2006/



For a beginning example, when X = An, one has Nν = qnν , and, therefore,

ZAn(t) =
1

1− qnt
.

Of course, An is not a projective variety for n ≥ 1.

When F is a field, the set of F -valued points of Pn is the disjoint union of A0(F ),A1(F ), . . . ,An(F ).
Therefore, DlogZPn(t) (over Fq) is the sum of DlogZAj (t) for 0 ≤ j ≤ n. Hence,

ZPn(t) =
1

(1− t)(1− qt) . . . (1− qnt)
.

For P1 ×P1, one has Nν = (1 + qν)2, and, therefore

Z
(P1×P1

)
(t) =

1
(1− t)(1− qt)2(1− q2t)

.

For curves of genus 1 defined over finite fields, the shape of its Z function was established
before the time of Weil’s conjectures. For example, in the case of the curve E given by
the Weierstrass equation y2 = x3 − 2x over the field F5, simply by counting points to
see that |E(F5)| = 10, it is a consequence of the theoretical framework that Z(t) is the
rational function

ZE(t) =
1 + 4t + 5t2

(1− t)(1− 5t)
.

For each of these last examples Pn, P 1×P 1, and E one may observe that ZX(t), relative
to the field Fq is a rational function in one variable and that:

1. the denominator is the product of polynomials whose degrees are the classical topo-
logical Betti numbers of the base extension XC of X for even dimensions.

2. the numerator is the product of polynomials whose degrees are the classical topolog-
ical Betti numbers of the base extension XC of X for odd dimensions.

3. the polynomial factor corresponding to classical cohomology in dimension j has the
form of the characteristic polynomial of a linear endomorphism ϕ of the form det(1−
tϕ) with complex reciprocal roots all of absolute value qj/2.

Wed., May. 3:

Beyond the theory of curves of genus 1 a good bit of what is involved in the study of curves
and of complete non-singular varieties in general is studying the group Div(X)/Div`(X).
For curves one has

Div`(X) ⊆ Div0(X) ⊆ Div(X)

where the quotient for the second step is the discrete group Z when Div0(X) is defined
as the group of divisors of degree 0. It turns out that the quotient for the first step is a
complete irreducible group variety of dimension g, and, thus, one cannot study curves in
depth without studying varieties of higher dimension.

For varieties of dimension greater than 1, defining the degree of a divisor as the sum
of its coefficients will not lead in the right direction. One would like a definition of
Div0(X) such that the first step is a complete irreducible variety and the second step
a finitely-generated abelian group, but there is no hope with these two conditions that
the second step will always be cyclic since for the case X = P1

k × P1
k one will find that

Div(X)/Div`(X) ∼= Z× Z.

For the purpose of gaining insight about Div(X)/Div`(X) in the theory of curves while
at the same time beginning to understand what might be required for defining Div0(X)
when dim(X) > 1, consider what is available with transcendental methods when k = C.
Complex exponentiation provides the short exact sequence of abelian sheaves for the
classical (locally Euclidean) topology on X:

0 → Z → Ohol
e→ O∗

hol → 0
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where e(f) = e2πif . In the long cohomology sequence the 0 stage splits off since
H0(X,Ohol) ∼= C. GAGA tells us that coherent module cohomology matches, and
although O∗ is certainly not an O-module, its H1 in both algebraic and transcendental
theories viewed through Czech theory classifies isomorphism classes of invertible coherent
modules. One has the exact sequence:

0 → H1(X,Z) → H1(X,Ohol) → H1(X,O∗
hol) → H2(X,Z) .

If dim(X) = 1, then H2(X,Z) ∼= Z, and one finds that the last map in this sequence, a
“connecting homomorphism”, sends the isomorphism class of an invertible Ohol-module
to its degree. Therefore, remembering that Div(X)/Div`(X) ∼= H1(X,O∗), one has

H1(X,Ohol)/H1(X,Z) ∼= Div0(X)/Div`(X) ,

and, in fact, the left side is the quotient of a g-dimensional vector space over C by a
lattice. Thus, Div0(X)/Div`(X) is a g-dimensional complex torus; it is, moreover, a
complete group variety over C.

For dim(X) > 1 the kernel of the connecting homomorphism will provide a correct notion
of “degree 0”.

For working over an arbitrary algebraically closed field, one sees that something is needed
to replace classical cohomology. Because constant sheaves are flasque in the Zariski
topology, their Zariski-based cohomology cannot be used.

Mon., May. 1:

Continuing with the discussion of the previous hour: If p, q, r are any three points of
X(k), then the triple sum p + q + r, like any point of X(k) is characterized by the linear
equivalence class of the associated one point divisor. One has the relation of linear
equivalence

〈p + q + r〉 ≡ 〈p〉+ 〈q〉+ 〈r〉 − 2 〈o〉 .

Therefore,

p + q + r = o ⇔ 〈p〉+ 〈q〉+ 〈r〉 ≡ 3 〈o〉
⇔ 〈p〉+ 〈q〉+ 〈r〉 = div(h) + 3 〈o〉 for some h ∈ L(3 〈o〉)
⇔ 〈p〉+ 〈q〉+ 〈r〉 = div(s) for some s ∈ H0(X,O(3 〈o〉))

⇔ 〈p〉+ 〈q〉+ 〈r〉 = div(axu3 + byu3 + cu3), some (a : b : c) ∈ P̌2
k

⇔ 〈p〉+ 〈q〉+ 〈r〉 = f−1(D), D = div(aX + bY + cZ) ∈ Div(P2
k)

where f : X → P2
k is the projective embedding of X given by the invertible O-module

O(3 〈o〉). In other words, taking multiplicities into consideration, three points sum to 〈o〉
in the group law on X(k) if and only if the corresponding points of a Weierstrass model
in P2

k, with o corresponding to the point on the line at infinity, are collinear.

From this description of the group law on X(k), in view of the fact that the third point of
a cubic on the line through two given points (tangent if the two points coincide) depends
rationally on the coordinates of the given points, it follows that

1. Addition X ×X → X and negation X → X are morphisms of varieties over k.

2. If F is the field generated over the prime field by the coefficients a0, . . . , a6 of the
Weierstrass equation, then

(a) The Weierstrass equation defines a scheme XF of finite type over F whose base
extension to k is X.

(b) For each extension E of F the set XF (E) is a group in a functorial way.
(c) XF (k) ∼= X(k).

Fri., Apr. 28:

Continuing with curves of genus 1, we wish to change notation so that the projective
embedding of the previous hour is given by the very ample invertible sheaf O(3 〈o〉), o ∈
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X(k). This notational change notwithstanding, o is an arbitrary point. Under the
projective embedding given by O(3 〈o〉), one has f(o) = (0 : 0 : 1), the unique point of
f(X) on the line at infinity. We wish to show that there is a unique commutative group
law on the set X(k) for which the map ϕ : Div(X) → X(k)

D =
∑

p∈X(k)

np 〈p〉 7−→ ϕ(D) =
∑

p∈X(k)

npp ,

which is tautologically a group homomorphism, has the property that ϕ(D1) = ϕ(D2)
whenever D1 ≡ D2 (linear equivalence), and further the property that o is the zero element
in X(k). (This is not the strongest statement of this type that can be made.) Addition
in X(k) is defined by observing that since for given p, q ∈ X(k) the divisor 〈p〉+ 〈q〉 − 〈o〉
has degree 1, its complete linear system consists of a single non-negative divisor of degree
1, i.e., 〈r〉, and this unique r ∈ X(k) is defined to be p + q. Since

〈p〉+ 〈q〉 − 〈o〉 ≡ 〈r〉 ,

the properties specified for ϕ make this definition necessary if, indeed, it defines a group.

It is straightforward to verify that the addition is associative, that o is its identity, and
that −p is given by the unique member of the complete linear system |2 〈o〉 − 〈p〉|. It
is obvious that this group law on X(k) is commutative and that ϕ is surjective. If
Div0(X) denotes the group of divisors of degree 0, then since ϕ(D) = ϕ(D− (degD) 〈o〉),
one sees that the restriction ϕ0 of ϕ to Div0(X) is a surjective homomorphism. Let
Div`(X) denote the group of divisors linearly equivalent to zero. It is trivial that the
map D 7→ D − (degD) 〈o〉 defines a homomorphism Div(X) → Div0(X) which, when
followed with reduction provides a homomorphism Div(X) → Div0(X)/Div`(X). It is
not difficult to verify that another homomorphism between this latter pair of groups is
given by

D 7→ 〈ϕ(D)〉 − 〈o〉 mod Div`(X) .

(That this is a homomorphism follows from reviewing the definition of ϕ(D1) + ϕ(D2).)
Since these two homomorphisms agree on divisors of the form 〈p〉 – which generate the
free abelian group Div(X) –, one has for all D ∈ Div(X) that

D − (degD) 〈0〉 ≡ 〈ϕ(D)〉 − 〈o〉 .

We know that degD depends only on the linear equivalence class of D as the first conse-
quence of the Riemann-Roch Theorem. Since r ∈ X(k) is determined uniquely by the
linear equivalence class of 〈r〉, this formula tells us that ϕ(D) depends only on the linear
equivalence class of D. However, the formula also tells us that the linear equivalence
class of D depends only on ϕ(D) and deg(D). In particular, one has

Div0(X)/Div`(X) ∼= X(k) .

Wed., Apr. 26:

Suppose that X is a complete non-singular curve over an algebraically closed field k of
genus 1. The range of degrees where a divisor D has H1(O(D)) ∼= (0) is deg(D) ≥ 1,
while we have dimH1(O) = 1. For each a ∈ X(k) the invertible module O(2 〈a〉) has no
base point, and, therefore, defines a morphism to P1

k. One has a two step filtration of
the 3-dimensional linear subspace L(3 〈a〉) of k(X):

k = L(0) = L(〈a〉) ⊂ L(2 〈a〉) ⊂ L(3 〈a〉) .

Choosing x ∈ L(2 〈a〉)−L(0) and y ∈ L(3 〈a〉)−L(2 〈a〉) one obtains a filtration-compatible
basis {1, x, y} of L(3 〈a〉), and if u is a “rational section” of O(〈a〉) with div(u) = 〈a〉, the
morphism f : X → P2

k given by

f = (Z : X : Y ), Z = u3, X = xu3, Y = yu3
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provides a projective embedding of X by the theorem of the last hour. Extending the
filtration inside k(X) by the L(m 〈a〉), one sees that

{
1, x, y, x2, xy, x3

}
is a filtration-

compatible basis of L(6 〈a〉). Since y2 ∈ L(6 〈a〉) − L(5 〈a〉), one has a linear relation
among monomials of degree 3

Y 2Z + a1XY Z + a3Y Z2 = a0X
3 + a2X

2Z + a4XZ2 + a6Z
3

with a0 6= 0 that characterizes f(X) as a non-singular hypersurface in P2
k. One says that

f(X) is in generalized Weierstrass form. One regards Z = 0 as the “line at infinity” in
P2

k, while one calls “affine” a point (X, Y ) = (1 : X : Y ). The intersection of f(X) with
the line at infinity reduces to the equation a0X

3 = 0. Therefore, the point (0 : 0 : 1) is
the only point of f(X) on the line at infinity, and as the point of intersection of the line
at infinity with f(X) it has multiplicity 3.

Mon., Apr. 24:

Continuing with the case of a complete normal curve over an algebraically closed field k.
When D is a divisor with deg(D) ≥ 2g, then for each a ∈ X(k) one has deg(D − 〈a〉) ≥
2g − 1, and, therefore, L(D − 〈a〉) is a hyperplane in L(D). Otherwise, said O(D)
has no base point. A coordinate-free interpretation of the morphism f : X → PN

k ,
where N = deg(D) − g, given by a basis of H0(X,O(D)) is that f(a) is the hyperplane
H0(X,O(D − 〈a〉)) regarded as a point in the projective space of hyperplanes through
the origin in H0(X,O(D)). If, moreover, deg(D) ≥ 2g + 1, then for a 6= b in X(k) it
follows that H0(X,O(D − 〈a〉 − 〈b〉)) has codimension 2 in H0(X,O(D)) so that f(a)
and f(b) must be different points, i.e., f is injective. Since X is complete, f(X) must
be a closed subvariety of dimension 1 in PN

k . The fact that H0(X,O(D − 2 〈a〉)) also
has codimension 2 in H0(X,O(D)) guarantees that da(f) : Ta(X) → Tf(a)(P

N
k ) has rank

1 for each a, and, therefore, that f(X) is itself a complete non-singular curve. Since
morphisms of complete non-singular curves are dual to the contravariant function field
extensions, f must be an isomorphism, i.e., O(D) is very ample when deg(D) ≥ 2g + 1.
As first example, when g = 0 and D = 〈a〉, the morphism f given by H0(X,O(〈a〉)) is
an isomorphism of X with P1

k.

Fri., Apr. 21:

In the context of a complete normal variety X over an algebraically closed field k an
invertible OX -module L is called very ample if there is an integer N ≥ 0 and a closed
immersion f : X → PN

k such that L ∼= f∗OPN

k

(1). (Recall the earlier description of

the functor of points over k of PN
k .) If L is very ample, then L⊗m is also very ample

for each m ≥ 1. One says that L is ample if there exists m ≥ 1 such that L⊗m is
very ample. Finally, if there is an integer N ≥ 0 and a morphism f : X → PN

k such
that L ∼= f∗OPN

k

(1), one says that L has no base point. For a particular value of N if

z0, . . . zN are homogeneous coordinates in PN
k , hence, a basis of H0(PN

k ,OPN

k

(1)), then

the sj = f∗zj are elements of H0(X,L) that do not vanish simultaneously at any point
of X(k). It follows that the members of any basis of H0(X,L) also have no common zero,
but it does not follow that the {sj} form a basis.

When dim(X) = 1, recall that for a divisor D of negative degree one has dimk(H0(X,O(D))) =
0. If K is a canonical divisor and D a divisor with

deg(D) > deg(K) = 2g − 2 ,

then K−D is a divisor of negative degree, and, consequently, by Serre duality dimkH1(X,O(D)) =
0 for any divisor D with deg(D) ≥ 2g − 1. When the genus g = 1, this means that
dimkH1(X,O(D)) = 0 for any divisor D of degree at least 1. The Riemann Roch
formula then implies that dimH0(X,O(D)) = deg(D). In particular if D = 〈a〉 for
a ∈ X(k), one sees that L(〈a〉) ⊇ L(0) ∼= k while both have dimension 1. Hence,
there can be no f ∈ k(X)∗ with only a single simple pole. The same type of reasoning
shows that k(X)∗ contains an element whose only pole is a double pole at a given point
a ∈ X(k).
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Wed., Apr. 19:

When A is a ring and B an A-algebra, the module ΩB/A is the B-module receiving an A-
derivation from B that is initially universal for derivations from B to B-modules. When
f : X → Y is a morphism of schemes there is an OX -module ΩX/Y that globalizes the
module of differentials from commutative algebra. A morphism f : X → Y of irreducible
varieties over an algebraically closed field k is called smooth if (i) f is dominant, i.e.,
f(X) = Y , and (ii) ΩX/Y is a locally-free OX -module of rank dim(X)−dim(Y ). A non-
singular variety over k is a variety X that is smooth over k. (An irreducible variety of
dimension 1 is non-singular if and only if it is normal.) When X is a non-singular variety,
one defines Ωp

X to be the p-th exterior power ∧pΩX/k. For n = dim(X) the top exterior
power ωX = Ωn

X is a locally-free OX -module that is called the canonical OX -module.

A form of Serre duality, which could be the subject of an entire course, is this:

Theorem. If X is a complete non-singular variety of dimension n and F a coherent
OX-module, then Hp(X,F) and Extn−p

O (F , ωX) are dual vector spaces over k.

An important special case is that when F is a locally-free O-module. Then

Extn−p
O (F , ωX) ∼= Extn−p

O (O, ωX ⊗F∨) ∼= Hn−p(X, ωX ⊗F∨)

where F∨ denotes the O dual of F . In the case of a complete normal curve a canonical
divisor is any divisor K for which O(K) ∼= ωX . When F = O(D) for an arbitary divisor
D, the vector spaces Hp(X,O(D)) and H1−p(X,O(K−D)) have the same dimension for
p = 0, 1. In particular one has g = dimH1(X,OX) = dimH0(X, ωX), and application
of the Riemann-Roch formula to a canonical divisor leads to the conclusion that any
canonical divisor must have degree 2g − 2.

Mon., Apr. 17:

Continuing with the case of a complete normal curve X over an algebraically closed field,
some observations:

1. If H0(X,O(D)) 6= (0), then deg(D) ≥ 0 since D is linearly equivalent to a non-
negative divisor div(f) + D for some f ∈ L(D).

2. The set
|D| = {E ∈ Div(X) | E ≥ 0, E ≡ D}

is called the complete linear system determined by D. It may be bijectively identified
with the projective space of lines through the origin in the vector space L(D) ∼=
H0(X,O(D)). A linear system is a projective subspace of a complete linear system.
One has

|D| =
{

div(s) | s ∈ H0(X,O(D))
}

.

3. Looking at the cohomology sequence associated with the short exact sequence

0 → O(D − 〈a〉) → O(D) → i∗i
∗O(D) → 0 ,

one sees that in going from D−〈a〉 to D either the dimension of H0 goes up by 1 or
the dimension of H1 goes down by 1 but not both.

4. To go further with complete normal curves we want to talk about Serre duality.

Fri., Apr. 7:

When X is a complete normal curve over an algebraically closed field k, a ∈ X a closed
point, 〈a〉 the corresponding divisor, and i : {a} → X the corresponding closed immersion
of a subvariety, one has the exact sequence of coherent O-modules

0 → I{a} → O → i∗O{a} → 0 ,

and, remembering that I{a} ∼= O(−〈a〉), then tensoring this exact sequence with the
invertible O-module O(D), D an arbitary divisor on X, one obtains

0 → O(D − 〈a〉) → O(D) → i∗i
∗O(D) → 0 .
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The third term above is a skyscraper that is rank 1 on O{a}({a}) ∼= k. The relation
among Euler characteristics given by the last short exact sequence reduces to

χ(X, D) = χ(X, D − 〈a〉) + 1

for every divisor D and every closed point a ∈ X, and, thus, the observation that χ(X, D)−
deg(D) is a constant depending only on X where

deg(D) =
∑

z

nz when D =
∑

z

nz 〈z〉 .

This provides a substantial portion of the Riemann-Roch Theorem:

χ(X, D) = deg(D) + 1− g

where g, the genus of X, is defined as dimkH1(X,O). As a corollary of this, together with
the observation that χ(X, D) depends only on O(D), one sees that deg(D) depends only
on O(D), and, therefore, deg(div(f)) = 0 for each f ∈ k(X)∗, a result that corresponds to
the statement for compact Riemann surfaces that the number of zeroes of a meromorphic
function equals the number of its poles.

For an initial understanding of the genus of a complete normal curve, consider the exact
sequence of O-modules

0 → O → k(X) → k(X)/O → 0

from which ensues the sequence of vector spaces over k

0 → k → k(X) → H0(X, k(X)/O) → H1(X,O) → 0

where the last 0 is H1 of the constant, hence flasque, sheaf k(X) and H0(X, k(X)/O)
is the vector space of “principal part specifications”. Thus, g = 0 if and only if every
principal part specification is realized by an element of k(X). Thereby it is clear that
the genus of P1

k is 0.

Wed., Apr. 5:

For D ∈ Div(X), X a normal variety, one defines

L(D) = {f ∈ k(X)∗ | div(f) + D ≥ 0} ∪ {0} .

L(D) is an O(X)-module that is isomorphic to the module of global sections of O(D).
While a (regular) section of a locally-free O-module of rank 1 is not represented by a
single element of k(X)∗, it does have local pieces that are unique up to multiplications
from O∗ and, consequently, has a globally well-defined divisor. If sf 6= 0 is the section of
O(D) corresponding biuniquely with f ∈ L(D), one has div(sf ) = div(f) + D. One sees
that dimkH0(X,O(D)) > 0 if and only if D is linearly equivalent to some non-negative
divisor.

A non-negative divisor D determines an O-ideal ID that is locally the principal ideal
generated by a local equation for D. It follows that ID is a rank 1 locally-free O-module,
and one sees easily that it is isomorphic to O(−D).

When X is a complete variety over a field k and M a coherent O-module the k-modules
Hq(X,M) are finite-dimensional over k for all q. This is a consequence of the more
general fact that direct images and higher direct images of a coherent module under a
proper morphism are coherent (see the text). One defines the Euler characteristic of a
coherent O-module by

χ(X,M) =
dim(X)∑

q=0

(−1)qdimkHq(X,M) .

When
0 →M′ →M→M′′ → 0

is an exact sequence of coherent O-modules on X, one has

χ(X,M) = χ(X,M′) + χ(X,M′′) .
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Mon., Apr. 3:

When X is a normal variety, the affine coordinate ring O(U) of an open affine subvariety U
is the intersection of its localizations at the prime ideals corresponding to the irreducible
closed sets in U of codimension 1. Hence O(X)∗ is the kernel of the homomorphism
div. Given a divisor D ∈ Div(X) and an open covering {Ui} of X that principalizes D,
say, D|Ui = divUi(fi), it follows from the computation of the kernel of div on the open
subvariety Uij = Ui∩Uj that fi = uijfj (all elements of k(X)) where uij ∈ O(Uij)∗. The
Cech 1-cocycle uij determines an element O(D) of the group H1

Cech(X,O∗) of locally-free
O-modules of rank 1, the map D → O(D) is a group homomorphism, and the sequence

1 → O(X)∗ → k(X)∗ → Div(X) → H1
Cech(X,O∗) → 1

is exact. One says that two divisors D1 and D2 are linearly equivalent (and one may
write D1 ≡ D2) if D2 − D1 = div(f) for some f ∈ k(X)∗ or, otherwise stated, if
O(D1) ∼= O(D2).

Fri., Mar. 31:

For an irreducible variety X over an algebraically closed field k, a divisor is an element
of the free abelian group Div(X) generated by the irreducible closed sets of codimension
1. When X is normal, the local ring at each irreducible closed set Z of codimension 1 is
a principal valuation ring, and, therefore, each element f 6= 0 in the function field k(X)
gives rise to a divisor

div(f) =
∑
Z

ordZ(f) ,

which is called a principal divisor. The map div : k(X)∗ → Div(X) is a homomorphism
of abelian groups. Since an open set U in X is also a variety, the functor U → Div(U)
defines an abelian sheaf Div on X that is easily seen to be flasque. When X is normal
and Z an irreducible closed set of codimension 1, the divisor in an open neighborhood of
Z of the unique prime in OZ is the generating divisor corresponding to Z. Thus one sees
that each divisor on X is locally principal.

Wed., Mar. 29:

If f : X → Y is an affine morphism of algebraic varieties over an algebraically closed field
k, then for each quasi-coherent OX -module F one has an isomorphism of Hq(X,F) with
Hq(Y, f∗F). Finite morphisms and closed immersions present important special cases.
To know the cohomology of every coherent OP -module on each projective space P = PN

k

is to know the cohomology of every coherent OX -module on every projective variety X.

Mon., Mar. 27:

On a Noetherian space the cohomological functor Hq for abelian sheaves vanishes when q >
dim(X). The E2 spectral sequence for composite functors is operative when application
of the first functor to an injective object in its domain yields an object that is acyclic
for the second functor. This applies to the direct image functor followed by the global
sections functor on abelian sheaves since the direct image of an injective abelian sheaf is
flasque.

Fri., Mar. 24:

On a Noetherian space (descending chain condition for closed sets) each of the sheaf
cohomology functors Hq on the category of abelian sheaves commutes with direct limits.

Wed., Mar. 22:

More on cohomology: Every abelian sheaf on a topological space X may be regarded
as a Z-module (sheaf of modules over the constant sheaf Z). As base cohomology one
uses the derived functors of the global sections functor in the category of Z-modules. An
abelian sheaf is flasque if its restrictions between open sets are all surjective. Every
flasque sheaf is acyclic for cohomology, and every injective A-module, for any sheaf of
rings A on X, is flasque. Consequently, sheaf cohomology in the category of A-modules
is consistent with that in the category of Z-modules.
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Mon., Mar. 20:

If f : (X,A) → (Y,B) is a morphism of ringed spaces, for every B-module G there is an
A-module pullback f∗(G) which at stalk level satisfies

f∗(G)x = Gf(x) ⊗Bf(x) Ax .

For a morphism of affine schemes pullback of quasi-coherent modules on the target is the
same thing as base extension. For P = PN

k , k an algebraically closed field, the exact
sequence

ON+1
P

(x0,...,xN )−→ OP (1) → 0

given by
(f0, . . . , fN ) 7→ f0x0 + . . . + fNxN

spawns, via pullback, the functor of points of PN
k over k: a morphism ϕ : X → PN

k is
“the same thing” as an invertible OX -module L and an N + 1-tuple of sections s0, . . . sN

of L that do not “vanish” simultaneously, i.e., that provide the exact sequence

ON+1
X

(s0,...,sN )−→ L → 0 ,

which is the ϕ-pullback of the referenced exact sequence on PN
k . For a k-valued point

x ∈ X(k) one has
ϕ(x) = (s0(x) : s1(x) : . . . : sN (x)) .

Fri., Mar. 17:

The isomorphism classes of locally-free A-modules of rank 1 form a group. The notion
of an exact sequence of A-modules. A-modules form an abelian category in which every
object admits an injective resolution. The global sections functor Γ(M) = M(X) is left
exact. The q-th cohomology functor X 7→ Hq(X,M) is defined as the q-th right derived
functor of Γ. Sideline example: the short exact sequence

0 → Z → Ohol
e→ O∗

hol → 0

of Z-modules in complex analytic geometry, where e(f) = e2πif is the complex exponen-
tial.

Wed., Mar. 15:

Homomorphisms of A-modules when A is a sheaf of rings on a topological space. Locally-
free A-modules of rank r and transition matrices relative to a trivializing covering. An
invertible A-module is a locally-free A-module of rank 1.

Mon., Mar. 13:

Class cancelled.

Fri., Mar. 10:

Properties and significance of the OP modules OP (d) on P = Pn
k for d ∈ Z where k is

an algebraically closed field.

Wed., Mar. 8:

The concept of sheaf of modules on a ringed space. Quasi-coherent and coherent modules
on a scheme. Examples.

Mon., Mar. 6:

If f : X → Y is a morphism of schemes with Y separated, then f is universally closed
if every split base extension of f is closed. Proper morphisms. Valuative criteria for
separated morphisms and proper morphisms.

Fri., Mar. 3:

Separated morphisms. If f : X → Y is an S-morphism and Y is separated over S, then
the graph of f is closed in X × Y and f is separated if and only if X is separated over
S. Henceforth, an algebraic variety will be assumed to be separated over its base field;
consequently, all morphisms of varieties will be separated. In a scheme that is separated
over an affine base, the intersection of any two open affines is affine.
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Wed., Mar. 1:

If x is an element of X, the scheme underlying an irreducible algebraic variety, the Krull
dimension of the local ring Ox is the codimension of {x} in X. When X is normal, the
local ring at an irreducible subvariety of codimension 1 in X is a discrete valuation ring.
The set of closed points of a complete and normal irreducible algebraic curve correspond
biuniquely with the non-trivial discrete valuation rings in its function field that contain
the ground field, and the entire structure of such a curve as a scheme may be recovered
from its function field.

Mon., Feb. 27:

Finite morphisms — yet another class closed under composition and base extension. The
normalization of an irreducible variety. Universally closed morphisms. Finite morphisms
are universally closed.

Fri., Feb. 17:

Any base extension of a morphism of finite type is also a morphism of finite type. Case in
point: the fibre of a morphism f : X → Y of finite type over an element y ∈ Y is a scheme
of finite type over the residue field κ(y). Over its image a morphism may be viewed as
providing a family of varieties, though not a well-behaved one without assumptions on
the morphism. The notion of affine morphism: another class of morphisms that is closed
under compostion and base extension.

Wed., Feb. 15:

The join of two Cartesian squares is another. Cartesian squares provide shelter for both
the geometric notion of product and the algebraic notion of base extension. The notion
of base extension of a morphism. Example: The action of Gal(k̄/k) on Xk̄ when X is a
k-scheme (and k̄ is the algebraic closure of the field k).

Mon., Feb. 13:

Detailed examination of the functor of points for E = Spec (Z [x, y] / (F (x, y))) where
F (x, y) is the polynomial F (x, y) = y2 − (x − a)(x − b)(x − c), particularly in relation
to base extensions of the coordinate ring. Existence and uniqueness of products in the
category of schemes over a given scheme.

Fri., Feb. 10:

The notion of morphism of a scheme over a “base scheme” globalizes the notion of homo-
morphism for algebras over a base ring. If S is a scheme, the functor

(Schemes/S)op −→ (Sets)

given by
T 7−→ HomS(T,X) = X(T )

is called the functor of points of X over S. X is determined as an S-scheme by its functor
of points. If X is the scheme associated with a variety X0 over an algebraically closed
field k, then X(k) = X(Spec(k)) is the set underlying X0. If K is an extension field of
k, a point ξ ∈ X(K) determines an element x ∈ X (no longer called a “point”) that is
called its center and a k-algebra homomorphism from the residue field at x to K. In the
affine case X(K) is precisely the set of naive points of X in K.

Wed., Feb. 8:

A morphism from a scheme to the affine scheme Spec(A) is dual to a ring homomorphism
from A to the ring of global sections of the scheme’s structure sheaf. The scheme associ-
ated with an affine variety over an algebraically closed field is characterized as a reduced
scheme of finite type over (the spectrum of) the field.

Mon., Feb. 6:

The category of schemes. Locally closed subschemes. Morphisms; schemes over a base
scheme.
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Fri., Feb. 3:

The category of affine schemes as (1) a fully faithful subcategory of the category of local-
ringed spaces and (2) as the opposite category of the category of commutative rings.

Wed., Feb. 1:

The notion of an affine scheme as a topological space equipped with a sheaf of rings;
morphisms between affine schemes.

Mon., Jan. 30:

The sheaf of rings associated with the spectrum of a commutative ring; the initial ring is
the ring of global sections.

Fri., Jan. 27:

The spectrum of a commutative ring and its Zariski topology.

Wed., Jan. 25:

Presheaves and sheaves; examples.

Mon., Jan. 23:

Overview.

2 Comments

Things Spotted on the Web

Wikipedia

There are a number of ways to enter.

• Algebraic Geometry2

• Schemes3

• Search Wikipedia for “algebraic geometry”4

Notes on Lectures by Hartshorne

These are notes by William Stein of 1996 lectures given by Robin Hartshorne at UC
Berkeley: http://modular.ucsd.edu/AG.html.

UP | TOP | Department

2URI: http://en.wikipedia.org/wiki/Algebraic Geometry
3URI: http://en.wikipedia.org/wiki/Scheme %28mathematics%29
4URI: http://en.wikipedia.org/wiki/Special:Search?search=%22algebraic+geometry%22&fulltext=fulltext
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