Math 520A Written Assignment No. 5

due Monday, May 7, 2007

Directions. This assignment should be typeset. You must explain the reasoning underlying your answers. If you make use of a reference other than class notes, you must properly cite its use.

You may not seek help from others on this assignment.

- 1. Write your own proofs of the following propositions:
 - (a) Every polynomial of degree 1 with coefficients in a field is irreducible.
 - (b) A field F admits no non-trivial algebraic extension if and only if every irreducible polynomial with coefficients in F has degree 1.
- 2. If F is a field, a polynomial $f(t) \in F[t]$ with coefficients in F determines a "polynomial function" $\varphi(f)$ from F to itself that is defined by

$$(\varphi(f))(a) = f(a)$$
 for $a \in F$.

If A denotes the F-algebra of all functions $F \to F$, φ is an F-algebra homomorphism $F[t] \to A$. Show the following:

- (a) φ is injective if F is an infinite field.
- (b) φ is not injective if F is a finite field.
- (c) φ is not surjective if F is an infinite field.
- (d) φ is surjective if F is a finite field.
- 3. A primitive element for a field extension E/F is an element $\theta \in E$ such that $E = F(\theta)$. Find primitive elements for E over \mathbf{Q} in the following cases:
 - (a) E is the splitting field over \mathbf{Q} of $t^{12} 1$.
 - (b) $E = \mathbf{Q}(\sqrt{2}, \sqrt{3}).$
- 4. More on the polynomial $t^4 + 1$:
 - (a) Explain why $t^4 + 1$ is irreducible in $\mathbf{Q}[t]$.
 - (b) Show that $t^4 + 1$ is **not** irreducible over $\mathbf{Z}/p\mathbf{Z}$ for every prime p.
 - (c) Find the group of **Q**-algebra automorphisms of the field

$$\mathbf{Q}[t]/(t^4+1)\mathbf{Q}[t]$$

- 5. For each of the following irreducible polynomials with coefficients in \mathbf{Q} determine the Galois group over \mathbf{Q} of its splitting field:
 - (a) $t^3 4t + 2$.
 - (b) $t^3 3t 1$.
 - (c) $t^4 2t^2 1$.
 - (d) $t^4 4t^2 + 2$.
 - (e) $t^4 10t^2 + 1$.