# Math 520A Written Assignment No. 4 

## due Monday, April 23, 2007

Directions. This assignment should be typeset. You must explain the reasoning underlying your answers. If you make use of a reference other than class notes, you must properly cite its use.

You may not seek help from others on this assignment.

1. Decompose the polynomial $t^{12}-1 \in F[t]$ as the product of irreducible polynomials when $F$ is the field
(a) $\mathbf{Q}$.
(b) $\mathbf{Z} / 5 \mathbf{Z}$.
2. Let $A$ denote the ring

$$
\mathbf{R}[t] /\left(t^{4}+1\right) \mathbf{R}[t]
$$

and $\pi$ the quotient homomorphism

$$
\pi: \mathbf{R} \rightarrow \mathbf{R}[t] /\left(t^{4}+1\right) \mathbf{R}[t] ;
$$

observe that $A$ is an $\mathbf{R}$-algebra via $\pi$.
(a) Determine the group of $\mathbf{R}$-algebra automorphisms of $A$.
(b) Assuming as known the fact (a consequence of the "fundamental theorem of algebra") that, up to $\mathbf{R}$-algebra isomorphism, the only non-trivial finite extension of the field $\mathbf{R}$ is $\mathbf{C}$, find all subfields of $A$ that contain $\pi(R)$.
3. Recall that the multiplicative group of a finite field must be cyclic. For the irreducible polynomial $p(t) \in F[t]$ find a polynomial in $F[t]$ of degree 1 whose congruence class mod $p(t)$ determines a generator for the multiplicative group of the finite field $F[t] /(p(t)) F[t]$ when
(a) $F=\mathbf{Z} / 2 \mathbf{Z}, \quad p(t)=t^{4}+t+1$.
(b) $F=\mathbf{Z} / 3 \mathbf{Z}, \quad p(t)=t^{2}+1$.
(c) $F=\mathbf{Z} / 3 \mathbf{Z}, \quad p(t)=t^{3}-t-1$.
(d) $F=\mathbf{Z} / 2 \mathbf{Z}, \quad p(t)=t^{5}+t^{2}+1$.
4. Find a monic polynomial $q(t)$ of degree 4 with integer coefficients having

$$
\begin{aligned}
\alpha & =\sqrt{2}+\sqrt{3}+\sqrt{6} \\
\beta & =-\sqrt{2}+\sqrt{3}-\sqrt{6} \\
\gamma & =\sqrt{2}-\sqrt{3}-\sqrt{6} \\
\delta & =-\sqrt{2}-\sqrt{3}+\sqrt{6}
\end{aligned}
$$

as real roots. Explain why $q(t)$ must be irreducible in $\mathbf{Q}[t]$.
5. For each of the following monic polynomials $p$ of degree 4 with coefficients in $\mathbf{Q}$ determine the extension degree over $\mathbf{Q}$ of the smallest subfield of $\mathbf{C}$ in which all complex roots of $p$ lie:
(a) $t^{4}-10 t^{3}+35 t^{2}-50 t+24$.
(b) $t^{4}+2$.
(c) $t^{4}-2 t^{2}-1$.
(d) $t^{4}+t-1$.
(e) $t^{4}-4 t^{2}+2$.

