Math 520A Written Assignment No. 1

due Wednesday, February 14, 2007

Directions. This assignment should be typeset. If you make use of a reference other than class notes, you must properly cite that use. You may not seek help from others.

Notation: Let F be a field. The following notations will be used.

F^*	the multiplicative group of F
$\operatorname{Mat}_n(F)$	the ring of all $n \times n$ matrices in F
$\operatorname{GL}_n(F)$	the multiplicative group $(Mat_n(F))^*$
\det	the homomorphism $\operatorname{GL}_n(F) \to F^*$ given by taking the <i>determinant</i> of a matrix
$\operatorname{SL}_n(F)$	the kernel of the homomorphism det
ν_n	the homomorphism $F^* \to \operatorname{GL}_n(F)$ given by $a \mapsto a \cdot 1_n$, $(1_n$ the identity)
$\operatorname{PGL}_n(F)$	the quotient group $\operatorname{GL}_n(F)/\operatorname{Im}(\nu_n)$

- 1. For each infinite field F and each integer $n \ge 2$ provide an example of an infinite subgroup of the group $\operatorname{GL}_n(F)$ of invertible $n \times n$ matrices in F that both contains a finite subgroup isomorphic to the group of permutations of the n coordinate axes of F^n and is not a normal subgroup of $\operatorname{GL}_n(F)$.
- 2. Let R be a commutative ring and I an ideal in R. One says that two matrices A and B in $Mat_n(R)$ are congruent modulo I if the difference matrix A - B has entries in I. Show that the set of matrices congruent to 0 modulo I is a two-sided ideal J_n in $Mat_n(R)$, and describe the quotient ring $Mat_n(R)/J_n$.
- 3. Determine the number of isomorphism classes among commutative rings (having 4 elements) of the form

$$\mathbf{F}_2[t]/(t^2+at+b)\mathbf{F}_2[t]$$

where \mathbf{F}_2 is the field with 2 elements, $\mathbf{F}_2[t]$ the ring of polynomials with coefficients in \mathbf{F}_2 , and $a, b \in \mathbf{F}_2$.

- 4. Let \mathbf{F}_3 denote the field of 3 elements. Observe that the order of the group $\mathrm{GL}_2(\mathbf{F}_3)$ is 48 and that the groups $\mathrm{SL}_2(\mathbf{F}_3)$ and $\mathrm{PGL}_2(\mathbf{F}_3)$ both have order 24. The group S_4 of all permutations of a set of 4 elements also has order 24. Determine which, if any, of these three groups of order 24 are isomorphic.
- 5. Let F be a field, and let V be a finite-dimensional vector space over F. V^* will denote the dual space of V. The Heisenberg group Hs(V) is the set $V \times V^* \times F$ with group law given by

$$(v_1, f_1, t_1) * (v_2, f_2, t_2) = (v_1 + v_2, f_1 + f_2, t_1 + t_2 + f_2(v_1))$$

(a) Show that the center¹ C of Hs(V) is the set

$$\{(0,0,t) \in \operatorname{Hs}(V) \mid t \in F\}$$

(b) Let H denote the set

$$\{ (0, f, 0) \in \operatorname{Hs}(V) \mid f \in V^* \}$$

Show that H is a subgroup of $H_{S}(V)$ that is isomorphic to the additive group of V^* .

(c) Let N denote the set

$$\{(v,0,t) \in \operatorname{Hs}(V) \mid v \in V, t \in F\}$$

Show that N is a normal subgroup of Hs(V).

- (d) Show that the quotient $H_{S}(V)/N$ is isomorphic to V^* .
- (e) Since N is normal in Hs(V), the subgroup H conjugates N to itself, i.e., one has $hnh^{-1} \in N$ for all $n \in N$ and all $h \in H$, and this provides an action of H on N. Describe the action of (the additive group of) V^* on N that corresponds via the isomorphism of H with V^* to this action of H on N.

¹Definition. The *center* of a group is the subset of the group consisting of those elements that commute with every element of the group.