Math 520A Written Assignment No. 1

due Wednesday, February 14, 2007

Directions. This assignment should be typeset. If you make use of a reference other than class notes, you must properly cite that use. You may not seek help from others.

Notation: Let F be a field. The following notations will be used.

F^{*}	the multiplicative group of F
$\operatorname{Mat}_{n}(F)$	the ring of all $n \times n$ matrices in F
$\operatorname{GL}_{n}(F)$	the multiplicative group $\left(\operatorname{Mat}_{n}(F)\right)^{*}$
det	the homomorphism $\mathrm{GL}_{n}(F) \rightarrow F^{*}$ given by taking the determinant of a matrix
$\mathrm{SL}_{n}(F)$	the kernel of the homomorphism det
ν_{n}	the homomorphism $F^{*} \rightarrow \mathrm{GL}_{n}(F)$ given by $a \mapsto a \cdot 1_{n},\left(1_{n}\right.$ the identity $)$
$\operatorname{PGL}_{n}(F)$	the quotient group $\mathrm{GL}_{n}(F) / \operatorname{Im}\left(\nu_{n}\right)$

1. For each infinite field F and each integer $n \geq 2$ provide an example of an infinite subgroup of the group $\mathrm{GL}_{n}(F)$ of invertible $n \times n$ matrices in F that both contains a finite subgroup isomorphic to the group of permutations of the n coordinate axes of F^{n} and is not a normal subgroup of $\mathrm{GL}_{n}(F)$.
2. Let R be a commutative ring and I an ideal in R. One says that two matrices A and B in $\operatorname{Mat}_{n}(R)$ are congruent modulo I if the difference matrix $A-B$ has entries in I. Show that the set of matrices congruent to 0 modulo I is a two-sided ideal J_{n} in $\operatorname{Mat}_{n}(R)$, and describe the quotient ring $\operatorname{Mat}_{n}(R) / J_{n}$.
3. Determine the number of isomorphism classes among commutative rings (having 4 elements) of the form

$$
\mathbf{F}_{2}[t] /\left(t^{2}+a t+b\right) \mathbf{F}_{2}[t]
$$

where \mathbf{F}_{2} is the field with 2 elements, $\mathbf{F}_{2}[t]$ the ring of polynomials with coefficients in \mathbf{F}_{2}, and $a, b \in \mathbf{F}_{2}$.
4. Let \mathbf{F}_{3} denote the field of 3 elements. Observe that the order of the group $\mathrm{GL}_{2}\left(\mathbf{F}_{3}\right)$ is 48 and that the groups $\mathrm{SL}_{2}\left(\mathbf{F}_{3}\right)$ and $\mathrm{PGL}_{2}\left(\mathbf{F}_{3}\right)$ both have order 24. The group S_{4} of all permutations of a set of 4 elements also has order 24. Determine which, if any, of these three groups of order 24 are isomorphic.
5. Let F be a field, and let V be a finite-dimensional vector space over F. V^{*} will denote the dual space of V. The Heisenberg group $\operatorname{Hs}(V)$ is the set $V \times V^{*} \times F$ with group law given by

$$
\left(v_{1}, f_{1}, t_{1}\right) *\left(v_{2}, f_{2}, t_{2}\right)=\left(v_{1}+v_{2}, f_{1}+f_{2}, t_{1}+t_{2}+f_{2}\left(v_{1}\right)\right)
$$

(a) Show that the center ${ }^{1} C$ of $\operatorname{Hs}(V)$ is the set

$$
\{(0,0, t) \in \operatorname{Hs}(V) \mid t \in F\}
$$

(b) Let H denote the set

$$
\left\{(0, f, 0) \in \operatorname{Hs}(V) \mid f \in V^{*}\right\}
$$

Show that H is a subgroup of $\operatorname{Hs}(V)$ that is isomorphic to the additive group of V^{*}.
(c) Let N denote the set

$$
\{(v, 0, t) \in \operatorname{Hs}(V) \mid v \in V, t \in F\}
$$

Show that N is a normal subgroup of $\operatorname{Hs}(V)$.
(d) Show that the quotient $\operatorname{Hs}(V) / N$ is isomorphic to V^{*}.
(e) Since N is normal in $\operatorname{Hs}(V)$, the subgroup H conjugates N to itself, i.e., one has $h n h^{-1} \in N$ for all $n \in N$ and all $h \in H$, and this provides an action of H on N. Describe the action of (the additive group of) V^{*} on N that corresponds via the isomorphism of H with V^{*} to this action of H on N.

[^0]
[^0]: ${ }^{1}$ Definition. The center of a group is the subset of the group consisting of those elements that commute with every element of the group.

