Transformation Geometry — Math 331

April 28, 2004

Transformation Groups: IV

We know that building blocks for isometries of \mathbb{R}^2 are the reflections in lines in \mathbb{R}^2 and for isometries of \mathbb{R}^3 are the mirror reflections in planes in \mathbb{R}^3 . Every isometry is the product of a finite number of these building blocks. What is a minimal set of additional building blocks that can be used to form every affine transformation? Two theorems from linear algebra are useful.

Theorem. (*The Principal Axis Theorem*) Every symmetric matrix is conjugate by an orthogonal matrix to a diagonal matrix.

Theorem. Every invertible matrix is the product of a symmetric matrix with positive eigenvalues and an orthogonal matrix.

Proof. The principal axis theorem is standard content of second undergraduate year linear algebra. For the second theorem let A be an invertible $n \times n$ matrix. Let T be the matrix A^tA . Clearly, T is symmetric, and, therefore, by the principal axis theorem $T = VC^tV$ with V orthogonal and C diagonal. If λ is an eigenvalue of T and x an eigenvector for λ , then $Tx = \lambda x \neq 0$ since A is invertible, and

$$|\lambda| |x||^2 = {}^t x (\lambda x) = {}^t x T x = {}^t x A^t A x = {}^t ({}^t A x) ({}^t A x) = \left| \left| {}^t A x \right| \right|^2 > 0$$

and, therefore, $\lambda > 0$. Thus, all of the diagonal elements in the diagonal matrix C are positive, and so $C = D^2$ is the square of a diagonal matrix with positive diagonal entries. Let S be the symmetric matrix $S = VD^{t}V$. Then one may check that $U = S^{-1}A$ is an orthogonal matrix, and so A = SU.

Definition. If r is a real number and a a point of \mathbb{R}^n , the affine transformation $D_r(a)$ of \mathbb{R}^n defined by $(D_r(a))(x) = (1-r)a + rx = a + r(x-a)$ is called a dilatation. The point a, which is always a fixed point, is called the *center* of $D_r(a)$. Unless there is mention to the contrary the term *dilatation* will be understood to include only the case r > 0.

If u is a given vector in \mathbb{R}^n , recall that any vector v may be written as v' + v'' where v' is parallel to u and v'' is perpendicular to u. One sometimes writes $v' = \operatorname{proj}_u(v)$ for the parallel component of v and $v'' = \operatorname{perp}_u(v)$ for the perpendicular component of v relative to u.

Definition. A 1-dimensional dilatation of \mathbb{R}^n is an affine transformation of the form

$$(\delta_r(a,u))(x) = a + r \operatorname{proj}_u(x-a) + \operatorname{perp}_u(x-a)$$

for some point a, some vector u, and some scalar r > 0.

Corollary. Every affine transformation of \mathbb{R}^n may be formed as a finite product of isometries and 1-dimensional dilatations.

Proof. Let f(x) = Ax + v. Since translation by v is an isometry, it is a question about the affine transformation $x \mapsto Ax$. In view of the decomposition A = SU with S symmetric having positive eigenvalues and U orthogonal, it is then a question about the transformation $x \mapsto Sx$, and by the principal axis theorem then a question about $x \mapsto Dx$ where D is a diagonal matrix with positive entries. Clearly this last affine transformation is a product of 1-dimensional dilatations.

Assignment for Friday, April 30

1. Represent the affine transformation $x \mapsto Ax$ of \mathbb{R}^2 as a product of isometries and 1-dimensional dilatations when

$$A = \left(\begin{array}{cc} 0 & 1 \\ -1 & -1 \end{array} \right) .$$

2. Represent the affine transformation $x \mapsto Ax$ of \mathbb{R}^3 as a product of isometries and 1-dimensional dilatations when

$$A = \left(\begin{array}{rrr} 6 & -3 & 6 \\ -1 & 2 & 2 \\ 4 & 4 & -2 \end{array} \right) .$$