Transformation Geometry — Math 331 April 21, 2004 ## The Notion of Transformation Group Recall that a transformation of a set is an *invertible* map from that set to itself. **Definition.** A collection of transformations of a set is a **transformation group** if - 1. It contains the identity transformation. - 2. The inverse of any transformation in the set is also in the set. - 3. The composition of any pair of transformations in the set is in the set. ## Examples of transformation groups. - 1. The set of all transformations of any set. - 2. The set of all affine transformations of \mathbb{R}^n . - 3. The set of all isometries of \mathbb{R}^n . - 4. The set of all translations of \mathbb{R}^n . The notion of transformation group is a special case of the general concept of (abstract) group. **Definition.** A group is a set G endowed with an operation defined for every pair of elements x, y in G that yields an element x * y in G such that the following rules hold: - 1. (x*y)*z = x*(y*z). - 2. There is an element e in G such that for each element x in G (a) the relation x*e = e*x = x holds and (b) there is an element x' in G such that the relation x*x' = x'*x = e holds. **Example.** Any transformation group G is a group when for any pair f, g of transformations $f * g = f \circ g$, the composition of f and g, the "group identity" e is the identity transformation, and the "group inverse" f' for a transformation f is the inverse transformation f^{-1} . **Example.** The set $GL_n(\mathbf{R})$ of invertible $n \times n$ matrices is a group when M * N is the matrix product of M and N, the "group identity" is the identity matrix, and the "group inverse" M' of a matrix M is the matrix inverse M^{-1} . ## Assignment for Friday, April 23 - 1. Which classes of isometries of \mathbb{R}^3 form transformation groups? - 2. Which unions of classes of isometries of R³ form transformation groups? - 3. What group of transformations of \mathbf{R}^3 admits an obvious bijective correspondence with the group $\mathrm{GL}_3(\mathbf{R})$ having the property that matrix multiplication corresponds to composition of transformations? - 4. What abstract group admits an obvious bijective correspondence with the transformation group consisting of all of the translations of \mathbb{R}^n having the property that the group operation * corresponds to composition of translations?