Transformation Geometry — Math 331

April 2, 2004

The Classification of Isometries of R^3 : I

- Recall that every isometry of \mathbb{R}^n is the composition of a translation and an isometry that fixes the origin, and that every isometry fixing the origin has the form $x \mapsto Ux$ where U is an orthogonal matrix.
- There is a four-way division according to (a) whether an isometry is orientation-preserving or not and (b) according to whether it has a fixed point or not. But for n=3 this does not give a complete description.
- The key to understanding the geometric structure of the isometry given by a 3×3 orthogonal matrix is to understand its eigenvectors and eigenvalues. Once that is done, one needs to analyze the transformation that results when one of those is followed by a translation.
- The characteristic polynomial of an $n \times n$ matrix A is the determinant of the $n \times n$ matrix of polynomials $t1_n A$ (with t the variable). It is a polynomial of degree n with leading coefficient 1 and constant term equal to $\det(-A) = (-1)^n \det(A)$.
- All of the eigenvalues of an orthogonal matrix must be of the form a + ib where a and b are real with $a^2 + b^2 = 1$.
- Counting multiplicities, there are n complex roots of any polynomial f of degree $n \ge 1$. If the leading coefficient of the polynomial is 1, then the sum of its n complex roots is the negative of the coefficient of degree n-1, and the product of its n complex roots is the constant term multiplied by $(-1)^n$.
- Since the characteristic polynomial of an orthogonal matrix is a polynomial with real coefficients, any of its roots that are not real must occur in complex-conjugate pairs. The product of any two complex-conjugate eigenvalues of an orthogonal matrix must be 1.
- Since the degree of the characteristic polynomial of a 3×3 matrix is odd, at least one of the eigenvalues of a 3×3 matrix must be real.
- **Proposition.** The three eigenvalues, counting multiplicities, of a 3×3 orthogonal matrix must be one of 1 or -1 and both of $\cos \theta \pm i \sin \theta$ for some real value of θ , $0 \le \theta < 2\pi$. If $\theta = 0$, then the latter two eigenvalues are both 1, and if $\theta = \pi$, then they are both -1.

Assignment for Monday, April 12

- 1. How may one describe the pencil of lines through the point (3, -5, 2), (a point on the line at infinity represented by homogeneous coordinates relative to the affine basis ((1,0),(0,1),(0,0))) in terms of the ordinary Cartesian geometry of \mathbb{R}^2 ?
- 2. Let f denote the linear isometry of \mathbf{R}^3 given by the formula f(x) = Mx where M is the 3×3 orthogonal matrix

$$M = \frac{1}{7} \begin{pmatrix} 6 & -2 & -3 \\ -2 & 3 & -6 \\ -3 & -6 & -2 \end{pmatrix} .$$

Describe f in geometric terms.

- 3. How much of the classification of the isometries of the plane would be obtained by pursuing a discussion for dimension 2 that is parallel to the discussion above for dimension 3?
- 4. Can a 3×3 orthogonal matrix other than the identity matrix be a scalar multiple of the affine matrix, relative to the affine basis ((1,0),(0,1),(0,0)), of an isometry of \mathbb{R}^2 ?