Transformation Geometry — Math 331

March 31, 2004

The Dual Projective Plane

A triple $(a, b, c) \neq (0, 0, 0)$ of real numbers can represent either a point in \mathbf{P}^2 or the coefficient vector in the equation for a line in \mathbf{P}^2 . In both cases the geometric object, i.e., the point or the line, is unchanged if the triple is multiplied by a non-zero scalar.

Thus, the set \mathcal{L} of all lines in \mathbf{P}^2 shares with \mathbf{P}^2 the property that its "points" are represented by homogeneous non-zero triples of real numbers. Another way of viewing this is to regard \mathcal{L} as another copy of \mathbf{P}^2 : the *dual* projective plane.

A key characteristic of this duality is, firstly, that a point in \mathcal{L} , i.e., a line in \mathbf{P}^2 , is determined by the set of points in \mathbf{P}^2 that belong to it and, secondly, that a point in \mathbf{P}^2 is determined by the set of lines in \mathbf{P}^2 to which it belongs.

Moreover, a line in \mathcal{L} is the set of "points" (a,b,c) in \mathcal{L} — with each such "point" corresponding to the line in \mathbf{P}^2 having the equation ax+by+cz=0 — satisfying a homogeneous linear equation Aa+Bb+Cc=0 with coefficient vector $(A,B,C)\neq (0,0,0)$. But when (A,B,C) is viewed as the triple of homogeneous coordinates for a point of \mathbf{P}^2 , one sees that this point of \mathbf{P}^2 lies on every line ax+by+cz=0 in \mathbf{P}^2 for which (a,b,c) is a "point" on the line Aa+Bb+Cc=0 in \mathcal{L} , and, moreover, since a point in \mathbf{P}^2 is determined by the set of lines in \mathbf{P}^2 on which it lies, the lines in \mathbf{P}^2 corresponding to "points" of the line in \mathcal{L} with equation Aa+Bb+Cc=0 are precisely the lines in \mathbf{P}^2 containing (A,B,C) regarded as a point of \mathbf{P}^2 .

Definition. A pencil of lines in \mathbf{P}^2 is the set of all lines in \mathbf{P}^2 containing a given point of \mathbf{P}^2 .

The preceding discussion makes it clear that a pencil of lines in \mathbf{P}^2 is essentially the same thing as a "line" in the dual projective plane. Another way to state this is to say that the projective plane dual to \mathcal{L} (the dual of the dual), which is the set of lines in \mathcal{L} , is essentially the same thing as \mathbf{P}^2 .

Exercises due Friday, April 2

- 1. Show that the set of lines in \mathbf{P}^2 stabilized under the translation of \mathbf{R}^2 by the vector (3, 4), treated as a projective transformation when x+y+z=0 is taken as the line at infinity, is a pencil of lines. What point of \mathbf{P}^2 is the point where the lines of the pencil are coincident?
- 2. If (a_1, a_2, a_3) and (b_1, b_2, b_3) are triples of homogeneous coordinates for two different points of \mathbf{P}^2 , what is the significance for those points of the "point" of the dual projective plane with homogeneous coordinate vector

$$(a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1)$$
.

3. Find all fixed points and stabilized lines of the projective transformation given by the matrix

$$\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 2 & 1
\end{array}\right) .$$

4. Find all fixed points and stabilized lines of the projective transformation given by the matrix

$$\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 2 & 1
\end{array}\right) .$$

Indicate what pencils occur among these lines.

- 5. Explain why every point of \mathbf{P}^2 lies on at least one of the lines in every pencil of lines in \mathbf{P}^2 .
- 6. Given a pencil of lines in \mathbf{P}^2 how many points of \mathbf{P}^2 lie on more than one of the lines in the pencil?