Transformation Geometry — Math 331

February 20, 2004

Discussion

• Theorem. Every orientation-preserving isometry of \mathbb{R}^2 with a fixed point is a rotation.

Proof. Let f be a given orientation-preserving isometry of \mathbf{R}^2 with fixed point c. Let τ be "translation by c", i.e., $\tau(x) = x + c$. Then the isometry $g = \tau^{-1} \circ f \circ \tau$ has the property g(0) = 0. Since g is an affine map that fixes the origin, g must be a linear transformation of \mathbf{R}^2 that is distance-preserving. Therefore, g(x) = Ux for some 2×2 orthogonal matrix U. By an exercise in the previous assignment U must be one of the matrices formed using $\cos \theta$ and $\sin \theta$ for some value of θ , and since g is orientation-preserving, $\det U > 0$ with the result that U must be the specific matrix

$$\left(\begin{array}{cc}
\cos\theta & -\sin\theta \\
\sin\theta & \cos\theta
\end{array}\right) .$$

Therefore, g is the rotation about the origin through the angle θ , and f is the rotation about the point c through the angle θ .

• **Theorem.** Every orientation-reversing isometry of \mathbb{R}^2 with a given fixed point is the reflection in some line containing the fixed point.

Proof. The argument is very similar to the preceding argument except that the 2×2 orthogonal matrix U satisfies $\det(U) < 0$ since the isometry is orientation-reversing, and, therefore,

$$U = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix} ,$$

which is the matrix of reflection in the line through the origin forming the angle $\theta/2$ with the positive first coordinate axis.

• **Proposition** Every rotation of \mathbb{R}^2 is the composition of the reflections in two lines passing through its center.

Proof. For example, let σ_1 be reflection in the horizontal line through the center and let σ_2 be reflection in the line through the center forming angle $\theta/2$ with the horizontal, where θ is the angle of rotation about the center. Then $\sigma_2 \circ \sigma_1$ is the given rotation.

Exercises due Monday, February 23

- 1. Prove: If an isometry f of the plane is a rotation about the point p, then for every point x in the plane p must lie on the perpendicular bisector of the line segment from x to f(x).
- 2. Show that every translation of \mathbb{R}^2 is the composition of the reflections in two parallel lines that are perpendicular to the direction of translation.
- 3. Show that the composition of a rotation with the reflection in a line through the center of the rotation is another such reflection.
- 4. Let A, B, C, and P be four points in a plane, no three of which are collinear. Let PA meet BC at D, PB meet CA at E, and PC meet AB at F. Prove that D, E, and F are not collinear.