Selected Homework Exercise Solutions Math 331, Transformation Geometry

February 6, 2002

P. 17, no. 6: Prove that if S is on segment $\overline{P R}$ and T is on segment $\overline{Q R}$, the segments $\overline{P T}$ and $\overline{Q S}$ intersect.

Response. The exercise is mainly meaningful when S and T are not endpoints of the segments on which they lie and when P, Q, R are not collinear. If that is the case, then there are numbers s, t with $0<s, t<1$ such that $S=(1-s) R+s P$ and $T=(1-t) R+t Q$. Moreover, a point on the line $P T$ has the form $(1-x) P+x T$ for some x, while a point on the line $Q S$ has the form $(1-y) Q+y S$ for some y. The lines $P T$ and $Q S$ meet if and only if there are numbers x, y for which the two previous expressions are equal. The question of whether such values of x, y exist (and, hence, the lines intersect) is addressed algebraically.

If those expressions are expanded using the formulas for S and T, then their equality becomes the relation

$$
(1-x) P+x t Q+x(1-t) R=y s P+(1-y) Q+y(1-s) R .
$$

With the assumption that P, Q, R are not collinear, hence, barycentrically independent, the corresponding coefficients of P, Q, R in this relation must be equal. Hence,

$$
1-x=s y, \quad t x=1-y, \quad(1-t) x=(1-s) y
$$

Solving these equations simultaneously for x, y one finds

$$
x=\frac{1-s}{1-s t}, \quad y=\frac{1-t}{1-s t} .
$$

The fact that these solutions exist means that the lines $P T$ and $Q S$ intersect. Moreover, from the fact that $0<s, t<1$ it is clear that $0<x, y<1$, and, therefore, that the point where the lines intersect is the intersection of the segments $\overline{P T}$ and $\overline{Q S}$.
P. 31, no. 4: P is a point inside a given triangle $A B C$, and F is the point on the side $A B$ where the line $C P$ meets $A B . \quad D$ is the point of intersection with $A C$ of the line through P parallel to $B C$, and E is the point of intersection with $B C$ of the line through P parallel to $A C$. Prove that $|A F| \cdot|C D| \cdot|B C|=|B F| \cdot|C E| \cdot|A C|$.

Response. If the vertices A, B, C are arranged clockwise, then each of the sides of the triangle is divided into two segments by the points F, E, D. Each corresponding length a, b, c is then decomposed: $a=a^{\prime}+a^{\prime \prime}, b=b^{\prime}+b^{\prime \prime}$, and $c=c^{\prime}+c^{\prime \prime}$, where $a^{\prime}=|C E|, b^{\prime}=|A D|$, and $c^{\prime}=|B F|$. With this notation the task is to show that $a b^{\prime \prime} c^{\prime \prime}=b c^{\prime} a^{\prime}$.

Let $P=u A+v B+w C$. Since the point F has unique barycentric coordinates with respect to A, B, C and is both a barycentric combination of the two points C, P and also a barycentric combination of the two points A, B, one sees that

$$
F=\frac{u}{u+v} A+\frac{v}{u+v} B .
$$

Let $D=(1-s) C+s A$ and $E=(1-t) C+t B$. By the parallelogram law of addition

$$
P=D+E-C,
$$

which leads to a second barycentric expression for P relative to the three vertices:

$$
P=s A+t B+(1-s-t) C .
$$

Hence, $s=u, t=v$, and, therefore,

$$
a^{\prime}=v a, \quad a^{\prime \prime}=(1-v) a, \quad b^{\prime}=(1-u) b, \quad b^{\prime \prime}=u b,
$$

while

$$
c^{\prime}=\frac{u}{u+v} c, \quad c^{\prime \prime}=\frac{v}{u+v} c
$$

Thus,

$$
a b^{\prime \prime} c^{\prime \prime}=\frac{u v}{u+v} a b c=b c^{\prime} a^{\prime}
$$

