Classical Algebra (Math 326) Written Assignment

due Monday, Dec 9, 2002

Directions

There will be a premium placed on accuracy in the grading of this assignment. Please submit your assignment typed. If there is more than one page, please staple. **Explain your solutions.**

Problems

- 1. Find the smallest positive primitive root modulo each of the following primes:
 - (a) 23.
 - (b) 43.
 - (c) 71.
- 2. Find the order of the congruence class of the polynomial f(x) modulo the polynomial m(x) when the field of coefficients is \mathbf{F}_p in the following cases:
 - (a) f(x) = x, $m(x) = x^2 + 1$, and p = 5.
 - (b) f(x) = x, $m(x) = x^2 x + 1$, and p = 5.
 - (c) f(x) = x 2, $m(x) = x^2 + 5x + 1$, and p = 7.
 - (d) f(x) = x + 1, $m(x) = x^3 x^2 + 1$, and p = 3.
- 3. Find a polynomial f(t) in $\mathbf{F}_5[t]$ whose congruence class modulo m(t) is a primitive element for the field $\mathbf{F}_5[t]/m(t)\mathbf{F}_5[t]$ when $m(t) = t^2 t + 1$.
- 4. \mathbf{F}_4 is defined to be the field $\mathbf{F}_2[t]/(t^2 + t + 1)\mathbf{F}_2[t]$.
 - (a) How many congruence classes are there of polynomials in $\mathbf{F}_4[x]$ modulo the polynomial $x^3 + x + 1$?
 - (b) Find a primitive element for the ring $\mathbf{F}_4[x]/(x^3 + x + 1)\mathbf{F}_4[x]$ of congruence classes.
 - (c) Explain why the polynomial $x^3 + x + 1$ is irreducible over \mathbf{F}_4 .
- 5. Write a proof of the following proposition: If F is a field and f(x) is in the ring F[x] of polynomials with coefficients in F, then the polynomial x and the polynomial f(x) have no (non-constant) common factor if and only if $f(0) \neq 0$.